ATTACHMENTS ### **ORDINARY MEETING** Thursday 20 April 2017 9.00 am Council Chambers Crookwell ### **Contents** | 9 | ENVIRONMENT AND PLANNING | |-----|---| | 9.4 | Draft Floodplain Risk Management Plan and Study for the Villages of Crookwell, Gunning, Collector and Taralga | | | Attachment 2: Draft Floodplain Risk Management Plan and Study - Vol 1 | | | Attachment 3: Draft Floodplain Risk Management Plan and Study - Vol 2197 | ## Contents | 10 | WORKS AND OPERATIONS | |------|---| | 10.3 | Pedestrian Access Mobility Plan (PAMP) & Bike Plan Attachment 1: Pedestrian Access Mobility Plan (PAMP) & Bike Plan (Draft) | | | Contents | | 11 | FINANCE AND ADMINISTRATION | | 11.4 | Integrated Planning and Reporting - Adoption of Draft Plans for Public Exhibition | | | Attachment 2: Draft Delivery Program 2017-2018 to 2020-2021389 | | | Attachment 3: Draft Operational Plan 2017-2018479 | | | Attachment 4: Draft Long Term Financial Plan 2017-2026615 | | | Attachment 5: Draft Infrastructure Plan 2017-2026695 | | | Attachment 6: Draft Workforce Plan 2017/2018 to 2020/2021749 | | | Attachment 7: Draft Social and Community Plan 2013-2018779 | ### **UPPER LACHLAN SHIRE COUNCIL** # THE VILLAGES OF CROOKWELL, GUNNING, COLLECTOR AND TARALGA FLOODPLAIN RISK MANAGEMENT STUDY AND DRAFT PLAN **NOVEMBER 2016** **VOLUME 1 - REPORT** DRAFT REPORT FOR PUBLIC EXHIBITION Job No DN374 File FVFRMS_V1_Report_[Rev 1 2] doc Date November 2016 Rev No 1 2 Principals SAB Authors SAB/TDR ### **FOREWORD** ### NSW Government's Flood Policy The NSW Government's Flood Policy is directed at providing solutions to existing flooding problems in developed areas and to ensuring that new development is compatible with the flood hazard and does not create additional flooding problems in other areas. Under the Policy, the management of flood liable land remains the responsibility of local government. The State subsidises flood mitigation works to alleviate existing problems and provides specialist technical advice to assist councils in the discharge of their floodplain management responsibilities. The Policy provides for technical and financial support by the State through the following four sequential stages: | 1. | Data Collection and Flood Study | Collects flood related data and undertakes an investigation to determine the nature and extent of flooding. | |----|----------------------------------|---| | 2. | Floodplain Risk Management Study | Evaluates management options for the floodplain in respect of both existing and proposed development. | | 3. | Floodplain Risk Management Plan | involves formal adoption by Council of a plan of management for the floodplain. | | 4. | Implementation of the Plan | Construction of flood mitigation works to protect existing development. Use of Local Environmental Plans to ensure new development is compatible with the flood hazard. | ### **Presentation of Study Results** The results of the flood study investigations commissioned by Upper Lachlan Shire Council have been presented in five separate reports: - > Data Collection Report, November, 2012. - ➤ Four Flood Study Reports (herein, collectively referred to as the Flood Studies), one for each of the four villages of Crookwell, Gunning, Collector and Taraiga all dated February 2014 and adopted by Council on 19 December 2013. - Floodplain Risk Management Study & Plan (this present report) The studies have been prepared under the guidance of the Floodplain Management Committee comprising representatives from Upper Lachlan Shire Council, the Office of Environment and Heritage and the NSW State Emergency Service. ### **ACKNOWLEDGEMENT** The studies have been prepared with financial assistance from the NSW Government's Floodplain Management Program and the technical support of Office of Environment and Heritage. This document does not necessarily represent the opinions of the NSW Government. 1 FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 ### **TABLE OF CONTENTS** Page No. SUMMARY.......51 INTRODUCTION 1 1.1 Study Background1 12 Background Information1 1.3 Overview of FRMS Report1 Community Consultation......3 1.4 1.5 2 BASELINE FLOODING CONDITIONS 4 2.1 Physical Setting......4 2.2 Drainage System5 Recent Flood Experience......6 2.3 2.4 Design Flood Behaviour8 2.4.1 Background8 Recent Updates to the Flood Models8 2.4.2 2.4.3 Design Flooding Patterns9 25 Impact of Flooding on Critical Infrastructure11 2.6 General14 2.6.2 2.7 2.8 2.8.1 2.8.2 Land Use Zoning - Upper Lachlan Local Environment Plan 2010 20 2.8.3 Flood Provisions - Upper Lachlan LEP 201021 Potential Impacts of Future Urbanisation24 2.9 2.10 Potential Impacts of Climate Change24 2.11 2.11.4 Dam Classification and Future Refinements to the Dam Break Analysis 29 Economic Impacts of Flooding30 2.12 2.13 2.14 POTENTIAL FLOODPLAIN MANAGEMENT MEASURES34 3.1 Range of Available Measures34 3.2 Community Views34 Cont'd Over 3.3 3.4 ### TABLE OF CONTENTS (Cont'd) | | | | Page No. | |---|------|--|----------| | | 3.5 | Property Modification Measures | 38 | | | - | 3.5.1 Controls over Future Development | 38 | | | | 3.5.2 Voluntary Purchase of Residential Properties | 43 | | | | 3.5.3 Raising Floor Levels of Residential Properties | 45 | | | 3.6 | Response Modification Measures | 46 | | | | 3.6.1 Improvements to Flood Warning System | 46 | | | | 3.6.2 Improved Emergency Planning and Response | 49 | | | | 3.6.3 Public Awareness Programs | 53 | | | | 3.6.4 Dam Safety Emergency Plans | 54 | | | 3.7 | Summary | 55 | | 4 | SELE | CTION OF FLOODPLAIN MANAGEMENT MEASURES | 59 | | | 4.1 | Background | 59 | | | 4.2 | Ranking of Options | 59 | | | 4.3 | Summary | 60 | | 5 | DRAF | FT FLOODPLAIN RISK MANAGEMENT PLAN | | | | 5.1 | The Floodplain Risk Management Process | 66 | | | 5.2 | Purpose of the Plan | 66 | | | 5.3 | The Study Area | 66 | | | 5.4 | Community Consultation | 66 | | | 5.5 | Economic Impacts of Flooding | 67 | | | 5.6 | Indicative Flood Extents | 67 | | | 5.7 | Structure of Floodplain Risk Management Study and Plan | 67 | | | 5.8 | Planning and Development Controls | 68 | | | | 5.8.1 Flood Policy | 68 | | | 5.9 | Revision to LEP 2010 | 72 | | | 5.10 | Improvements in Emergency Planning and Flood Awareness | 72 | | | 5.11 | Severe Weather and Flood Warning Service | 73 | | | 5.12 | Mitigating Effects of Future Development | 73 | | | 5.13 | Voluntary Purchase of Residential Property | 73 | | | 5.14 | Raising Floor Levels of Residential Property | 74 | | | 5.15 | Implementation Program | 74 | | 6 | GLO | SSARY OF TERMS | 75 | | 7 | REFI | ER ENC ES | 78 | ### **APPENDICES** - A Community Consultation - B Flood Damages - C Assessment of Potential Flood Modification Measures - D Draft Flood Policy - E Flood Data for Individual Road and Pedestrian Crossings (Tables Bound In Volume 2) # LIST OF FIGURES (BOUND IN VOLUME 2) | 1. | .1 | Study | Location | Plan | |----|----|-------|----------|------| |----|----|-------|----------|------| - 2.1 Crookwell Stormwater Drainage System - 2.2 Gunning Stormwater Drainage System - 2.3 Collector Stormwater Drainage System - 2.4 Taralga Stormwater Drainage System - 2.5 Crookwell Indicative Depths of Above-Ground and Above-Floor Inundation 100 year ARI (2 Sheets) - 2.6 Crookwell Time of Rise of Floodwaters (2 Sheets) - 2.7 Difference in Peak Flood Levels Between PMF and Extreme Flood at Crookwell (2 Sheets) - 2.8 Crookwell Indicative Depths of Above-Ground and Above-Floor Inundation PMF (2 Sheets) - 2.9 Gunning Indicative Depths of Above-Ground and Above-Floor Inundation 100 year ARI - 2.10 Gunning Time of Rise of Floodwaters - 2.11 Difference in Peak Flood Levels Between PMF and Extreme Flood at Gunning - 2.12 Gunning Indicative Depths of Above-Ground and Above-Floor Inundation PMF - 2.13 Collector Indicative Depths of Above-Ground and Above-Floor Inundation 100 year ARI - 2.14 Collector Time of Rise of Floodwaters (2 Sheets) - 2.15 Difference in Peak Flood Levels Between PMF and Extreme Flood at Collector - 2.16 Collector Indicative Depths of Above-Ground and Above-Floor Inundation PMF - 2.17 Taralga Indicative Depths of Above-Ground and Above-Floor Inundation 100 year ARI - 2.18 Taralga Time of Rise of Floodwaters - 2.19 Difference in Peak Flood Levels Between PMF and Extreme Flood at Taralga - 2.20 Taralga Indicative Depths of Above-Ground and Above-Floor Inundation PMF - 2.21 Crookwell Extents of Inundation and Location of Critical Infrastructure (2 Sheets) - 2.22 Gunning Extents of Inundation and Location of Critical Infrastructure - 2.23 Collector Extents of Inundation and Location of Critical Infrastructure - 2 24 Taralga Extents of Inundation and Location of Critical Infrastructure - 2.25 Crookwell LEP 2010 Zoning - 2.26 Gunning LEP 2010 Zoning - 2.27 Collector LEP 2010 Zoning - 2.28 Taralga LEP 2010 Zoning Cont'd Over ## LIST OF FIGURES (Cont'd) (BOUND IN VOLUME 2) - 2.29 Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Crookwell 100 year ARI (Sheets 1 to 2) - 2.30 Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Gunning 100 year ARI - 2.31 Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Collector 100 year ARI - 2.32 Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Taralga ~ 100 year ARI - 2.33 Potential Impact of Todkill Park Dam Failure on Flooding Behaviour 100 year ARI -
2.34 Potential Impact of Cullen Street Dam Failure on Flooding Behaviour 100 year ARI - 3.1 Crookwell Flood Emergency Response Planning Classifications 100 year ARI (2 Sheets) - 3.2 Crookwell Flood Emergency Response Planning Classifications PMF (2 Sheets) - 3.3 Gunning Flood Emergency Response Planning Classifications 100 year ARI - 3.4 Gunning Flood Emergency Response Planning Classifications -- PMF - 3.5 Collector Flood Emergency Response Planning Classifications 100 year ARI - 3.6 Collector Flood Emergency Response Planning Classifications PMF - 3.7 Taralga Flood Emergency Response Planning Classifications 100 year ARI - 3.8 Taralga Flood Emergency Response Planning Classifications PMF ### **ABBREVIATIONS** AEP Annual Exceedance Probability (%) AHD Australian Height Datum ARI Average Recurrence Interval (years) ARR Australian Rainfall and Runoff (1998 Edition) BoM Bureau of Meteorology DECC Department of Environment and Climate Change DSC Dam Safety Committee DSEP Dam Safety Emergency Plan FDM Floodplain Development Manual, 2005 FMC Floodplain Management Committee FPL Flood Planning Level (100 year ARI flood level + freeboard) FPA Flood Planning Area (area inundated at the FPL) FRMS Floodplain Risk Management Study FRMP Floodplain Risk Management Plan FRMS&DP Floodplain Risk Management Study and Draft Plan LEP Local Environment Plan LiDAR Light Detection and Ranging MFL Minimum Floor Level MOF Major Overland Flow MOF MFL Major Overland Flow Minimum Floor Level MSMTF Main Stream and Minor Tributary Flooding MSMTF MFL Main Stream and Minor Tributary Flooding Minimum Floor Level NSW SES New South Wales State Emergency Service OEH Office of Environment and Heritage PMF Probable Maximum Flood PMP Probable Maximum Precipitation PRM Probabilistic Rational Method STP Sewage Treatment Plant Council Upper Lachlan Shire Council VP Voluntary Purchase ### SUMMARY ### S1 Study Objectives Upper Lachlan Shire Council (Council) commissioned the Floodplain Risk Management Study and Plan for the villages of Crookwell, Gunning, Collector and Taralga. The overall objectives of the Floodplain Risk Management Study (FRMS) were to assess the impacts of flooding, review existing Council policies as they relate to development of land in flood liable areas, consider options for the management of flood affected land and to develop a draft Floodplain Risk Management Plan (FRMP) which: - Proposes modifications to existing Council policies to ensure that the development of flood affected land is undertaken so as to be compatible with the flood hazard and risk. - ii) Proposes Flood Planning Levels for the various land uses in the floodplain. - iii) Sets out the recommended program of works and measures aimed at reducing over time, the social, environmental and economic impacts of flooding. - iv) Provides a program for implementation of the proposed works and measures. The FRMS focusses on Main Stream Flooding (MSF) from the Crookwell River and Kiamma Creek at Crookwell, Meadow Creek at Gunning, Collector Creek at Collector and Corroboree Creek at Taralga; Minor Tributary Flooding (MTF) caused by high flows in the minor un-named tributaries which drain to the aforementioned watercourses, and Major Overland Flow (MOF) areas which occur in the developed parts of the four villages. Flooding problems on the MOF paths arise from surcharges of the trunk drainage systems, which comprise a mix of natural depressions, pipes, culverts and open drains. The solutions of problems resulting from surcharges of minor drainage lines in streets or in individual allotments remote from the MOF paths are matters for stormwater management by Council and are outside the scope of the present investigation. ### S2 Study Activities The activities undertaken in this FRMS included: - Review of flooding patterns in the four villages for flood events up to the Probable Maximum Flood (PMF), as determined in the The Village of Crookwell Flood Study, The Village of Gunning Flood Study, The Village of Collector Flood Study and The Village of Taralga Flood Study (herein, collectively referred to as the Flood Studies), all four of which were adopted by Council in December 2013. (Chapter 2). - Undertaking a consultation program over the course of the study to ensure that the Lachlan Shire community was informed of the objectives, progress and outcomes over the course of the study (Appendix A). - Assessment of the economic impacts of flooding, including the numbers of affected properties and estimation of damages (Chapter 2 and Appendix B). ¹ Note that for planning purposes, flooding along the Cullen Street Overland Flow Path at Crookwell (refer Figure 2.1 for location) has been assessed in the same way as flow in the channels of the Crookwell River and Kiamma Creek (i.e. as MSF). - 4. Review of current flood related planning controls for Lachlan Shire and their compatibility with flooding conditions and preparation of a draft *Flood Policy* to guide future development in flood prone areas (Chapter 2 and Appendix D). - 5. Strategic review of potential floodplain management works and measures aimed at reducing flood damages, including an economic assessment of the most promising measures (Chapter 3 and Appendix C). - 6. Ranking of works and measures using a multi-objective scoring system which took into account economic, financial, environmental and planning considerations (Chapter 4). - 7. Preparation of a draft *FRMP* for the villages of Crookwell, Gunning, Collector and Taralga (Chapter 5). ### S3 Summary of Flood Impacts The study area comprises the urban areas of Crookwell, Gunning, Collector and Taralga, as well as their immediate environs. Flooding in the villages is of a "flash flooding" nature, with water levels on the main arms of the creeks peaking between about two and four hours after the commencement of heavy rainfall. On the smaller, urban catchments the time to peak on the MOF paths is less than one hour. Figures 2.5 to 2.20 show the nature of flooding in the four villages for events with average recurrence intervals (ARI's) of 20 and 200 years, as well as the Probable Maximum Flood (PMF). At Crookwell, 103 residential properties would be flood affected (i.e. water has entered the allotment) at the 100 year ARI level of flooding. Fourteen of those properties would experience above-floor inundation up to 300 mm in the event of a 100 year ARI flood, along with seven commercial and two public buildings. The total flood damages at Crookwell are \$1.91 Million for an event of a 100 year ARI. At Gunning, 34 residential properties would be flood affected at the 100 year ARI level of flooding. Seven of those properties would experience above-floor inundation up to 200 mm, while eight commercial properties and three public buildings would be flooded above floor level in the event of a 100 year ARI flood. Total flood damages at Gunning are \$0.82 Million for an event of a 100 year ARI. At Collector, four residential properties would be flood affected at the 100 year ARI level of flooding, of which none would experience above-floor inundation. One commercial property would be flooded above floor level at the 100 year ARI flood. No public buildings would be flooded at the event of a 100 year ARI flood. Total flood damages at Collector are \$0.07 Million for an event of a 100 year ARI. At Taralga, 14 residential properties would be flood affected, of which two would experience above-floor inundation up to 200 mm in the event of a 100 year ARI flood. One commercial property and one public building would be flooded above floor level in the event of a 100 year ARI flood. Total flood damages at Taralga are \$0.25 Million for an event of a 100 year ARI. The "present worth value" of damages resulting from all floods up to the magnitude of the 100 year ARI at a seven per cent discount rate are \$3.64 Million (Crookwell), \$0.83 Million (Gunning), \$0.01 Million (Collector) and \$0.48 Million (Taralga), respectively. These numbers represent the amount of capital spending which would be justified if a particular flood mitigation measure prevented flooding for all properties up to the 100 year ARI event in each village. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 A key finding of *The Village of Gunning Flood Study* was the presence of a break out of flow which occurs on the left bank of Meadows Creek in the vicinity of Cullavin Street at about the 100 year ARI level of flooding. The *FRMS* demonstrated that flood damages in Gunning, while relatively minor at the 100 year ARI level of flooding, increase significantly for a slightly larger flood event. The flood hazard also increases significantly in a number of properties that are located on the southern side of Yass Street east of Warrataw Street for a slightly larger flood event. Another key finding is the large flood range which is present at Gunning between the 100 year ARI and PMF events (in the order of 5-6 metres). This large flood range is a function of the constrictive effects imposed by the narrowing of the floodplain at Gunning, combined with backwater effects imposed by the Main Southern Railway line which crosses Meadow Creek a short distance downstream of the village. Modelling undertaken as part of the FRMS shows that while the removal of the railway embankment would reduce peak PMF levels immediately upstream of its location by over three metres, its beneficial effects would be less in the village. For example, the removal of the railway embankment would lead to a reduction in peak PMF levels of about two metres at the Barbour Park Weir, reducing to about one metre at the Jack Shaw Bridge. ### S4 Flood Risk and Development Controls A draft Flood Policy has been prepared to guide future development in flood prone areas in the four villages (refer Appendix D). The policy is based on the three types of flooding that are present in the four villages: the deep and relatively fast moving flow in the Main
Streams, the shallower and slower moving flow in the Minor Tributaries which drain to the Main Streams and the shallow and slow moving flow in the MOF paths. Controls over development are graded according to the flood risk. The delineation of flood risk zones is based on the proximity to flow paths, depths and velocities of flow, the rate of rise of floodwaters and ease of evacuation from the floodplain in the event of a flood emergency. Figures D1.1, D1.2, D1.3 and D1.4 in the Flood Policy are extracts from the Flood Planning Map relating to the villages of Crookwell, Gunning, Collector and Taralga, respectively. The extent of the FPA (the area subject to flood related development controls) is shown in a solid red colour on the Flood Planning Map and has been defined as follows: - > In areas affected by MSF, the FPA is based on the traditional definition of the area which lies below the peak 100 year ARI flood level plus 500 mm freeboard. - In areas affected by MTF, the FPA is defined as areas where depths of inundation in a 100 year ARI event exceed 150 mm. - In areas affected by MOF, the FPA is defined as the extent of the High and Low Hazard Floodway zones, as well as areas where depths of inundation in a 100 year ARI event exceed 150 mm. The illustration in Section 5.8.1 of the *DFRMP* (refer Chapter 5 of this report) demonstrates the application of the variable freeboard approach (both positive and negative) in the derivation of the FPA in areas subject to the three types of flooding. For areas outside the FPA shown on the *Flood Planning Map*, the FPA is defined as land which lies below the peak 100 year ARI flood level plus 500 mm freeboard. An Outer Floodplain has also been defined comprising the additional land flooded between the extent of the FPA and the PMF, as shown on the *Flood Planning Map*. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 **S**3 Minimum Floor Level (MFL) requirements would be imposed on future development in properties that are identified as lying either partially or wholly within the extent of the FPA shown on the Flood Planning Map. The MFL's for all land use types affected by MSF and MTF is the level of the 100 year ARI flood event plus 500 mm freeboard, while the MFL's for all land use types affected by MOF is the level of the 100 year ARI flood event plus 300 mm freeboard. The illustration in Section 5.8.1 of the DFRMP (refer Chapter 5 of this report) demonstrates the application of the variable freeboard approach in the derivation of the MFL requirements in areas subject to MSF, MTF and MOF. ### S5 The Floodplain Risk Management Plan The draft FRMP showing recommended flood management measures for the four villages is presented in Table S1. They have been given a provisional priority ranking, confirmed by the Floodplain Management Committee, according to a range of economic, social, environmental and other criteria set out in Tables 4.1 to 4.4 of the report. The draft FRMP includes three "non-structural" management measures of a planning nature which could be implemented by Council with the assistance of New South Wales State Emergency Service (NSW SES), using existing data and without requiring Government funding. ### The measures are as follows: - Measure 1 The application of the graded set of planning controls for future development that recognise the location of the development within the floodplain; to be applied through the draft Flood Policy for the four villages, included in the report as Appendix D. Application of these controls by Council will ensure that future developments in flood liable areas in the four villages are compatible with the flood risk. - Measures 2 and 3 Improvements in the NSW SES's emergency planning, including use of the flood related information contained in this study to assist with the finalisation of the Local Flood Plan for Upper Lachlan Shire. Information in this present report and in the Flood Studies which would be of assistance to NSW SES in the finalisation of the Local Flood Plan includes data on the nature and extent of flooding in the four villages, times of rise of floodwaters, duration and depth of inundation at major road crossings for a range of flood events and properties affected by flooding. The fourth and fifth measures, which will need to be funded by Council, relate to the dissemination of severe weather warnings via SMS to occupiers of the floodplains at all four villages, as well as a broadcasting system altering occupiers of the floodplain at Gunning of rapidly rising water levels in Meadow Creek. Measure 4 - Scoping Study to assess requirements for the implementation of a location-based severe weather warning alert system for all four villages, as well as the installation of a telemetered water level recorder and land-based broadcasting system for the village of Gunning. It will be necessary to consult with the private sector to determine the range of services which can be provided in regard a location-based severe weather warning alert service for each of the villages. A Brief will also need to be issued to Manly Hydraulic Laboratory who can advise of the costs associated with the installation and maintenance of a telemetered water level recorder in Meadow Creek at Gunning. The Brief will also need to include requirements for the installation and maintenance of a land-based broadcasting system for the village. FVFRMS_V1_Report_{Rev 1.2].doc November 2016 Rev. 1.2 Measure 5 - Depends on the results of the Scoping Study, Measures 4, and would comprise the implementation of a location-based severe weather warning alert system at each village, as well as a land-based flood warning system for the village of Gunning. It would involve the commissioning of a private service provider who would develop and implement the location-based severe weather warning alert system at each village. It would also involve the commissioning of Manly Hydraulics Laboratory who would install a telemetered water level recorder in Meadow Creek at Gunning, as well as a land-based broadcasting system in the village. An Operations & Maintenance Manual would also need to be prepared which sets out features of the system such as the protocols that will govern the dissemination of alerts to occupiers of the floodplain, as well as maintenance requirements. The sixth measure, which would be funded by Council, comprises the preparation of a submission to the NSW Dam Safety Committee (DSC) to confirm the preliminary findings of the FRMS, namely that the Todkill Park Dam on Kiamma Creek and the Cullen Street Dam on the Cullen Street Overland Flow Path at Crookwell (refer Figure 2.1 for location) have a "High C" Consequence Category and therefore should be prescribed under the Dams Safety Act 1978. Measure 6 - Preparation of a submission to the DSC which would include more detailed hydraulic studies of the impact a "Sunny Day" failure would have on flooding behavior in existing development, as well as the completion of DSC's D1 form. Supporting documentation would also need to be prepared setting out the methodology which was adopted in the assessment of the impact the failure of the earth embankments would have on flooding behaviour. A series of flood impact maps would also need to be prepared as part of the submission. The above measure has been given a Priority 1 assessment and is considered to be an essential part of the FRMP. The seventh measure, which is dependent on the outcome of Measure 6, comprises the preparation of Dam Safety Emergency Plans (DSEP's) for the Todkill Park and Cullen Street Dams. As the owner of the Todkill Park Dam, Council is required by the NSW Dam Safety Committee to prepare the DSEP, while Council will need to liaise with the owner of the Cullen Street Dam regarding the need to prepare a DSEP for the privately owned structure. Measure 7 is the preparation of DSEP's which will provide a detailed assessment of the likelihood and consequences of a dam-break failure of the Toddkill Park and Cullen Street dams and will assist NSW SES in the development of evacuation procedures in the event of an emergency. It will require survey, geotechnical investigation and hydraulic modelling, and could contain a recommendation for instrumentation to allow Council to monitor storage levels and rainfall in the catchment. The above measure has been given a **Priority 1** assessment and is considered to be an essential part of the *FRMP*. ### S6 Timing and Funding of FRMP Measures The total estimated cost to implement the preferred floodplain management strategy is \$360,000, exclusive of Council and NSW SES Staff Costs. The timing of the measures will depend on Council's overall budgetary commitments and the availability of both Council and Government funds. Assistance for funding qualifying projects included in the *FRMP* may be available upon application under the Commonwealth and State funded floodplain management programs, currently administered by Office of Environment and Heritage. ### S7 Council Action Plan - 1. Council finalises the FRMS report and approves the draft FRMP according to the procedure recommended in Section 5.15. - Council and NSW SES commence work on the "non-structural" measures in the FRMP (Measures 1 to 3). - 3. Council applies for Government Funding for the Scoping Study comprising **Measure 4** of the *FRMP*. - 4. Council establishes a program for the installation and operation of the location-based severe weather warning alert system at each village, as well as the installation and operation of the land-based broadcasting system at Gunning, as confirmed by the Scoping Study (Measure 5). - Council prepares a submission to the DSC to confirm whether the Todkill Park and Cullen Street dams need to be prescribed under the Dams Safety Act 1978 (Measure 6). - 6. Depending on the outcome of Measure 6, Council prepares the Dam Safety Emergency Plan (DSEP) for its Todkill Park Dam as required by the DSC and liaises
with the owner of the Cullen Street Dam regarding the need to prepare a DSEP for the privately owned structure (Measure 7). FVFRMS_V1_Report_(Rev 1.2).doc November 2018 Rev. 1.2 The Villages of Crookwell, Gunning, Collector and Tamipa Floodplain Risk Management Study and Draft Plan # TABLE S1 RECOMMENDED MEASURES FOR INCLUSION IN UPPER LACKLAN DRAFT FLOODPLAIN RISK MANAGEMENT PLAN | | Develop and issue a Shief to Man'y Hydraulic Laboratory who can edvise of the costs associated with the installation and maintenance of a felemeterad water fevel recorder in Meadow Creek at Gunning. The Brief will also need to include requirements for the Installation and maintenance of a land-based broadcasting system for the velage. | | ing & | nstallation of a telemelered water level
recorder and land-based broadcasting
system for the village of Gunning. | |--|---|-------------------|--------------|---| | ngh profily, it does not require Government landing. | Develop an initial set of protocols for the dissemination of flood atents to occupiers of the floodplain at Gunning. | | ₹ \$ | for the four Wages, as well as the | | Priority 1: this measure would reduce the risk of loss of life and also flood damages within the four villeges and has a | Consult with the private sector to determine the range of services which can be provided in regard a location-based severe weather warning elert service for each of the four villages. | .000 | for \$40,000 | Scoping Study to assess requirements for
the development and operation of a location- | | | The signs are to also show the preferred evacuation routes from the sites. | | H | | | | by utilising the sites, occupiers agree to receive SMS messages alerting of severe weather and potentially damaging flooding in the
area (refer Measures 4 and 5 below for details). | | _ | | | | o the sites are subject to potentially dangerous flooding; and | | | | | Government running. | Signage to be developed for the Crockwell Carevan Park and the 2 off camping grounds at Gunning stating that: | • | | | | Priority 1: this measure would improve the flood awareness of the community and has a high priority. It does not require | Council to inform residents of the flood risk, based on the information presented in the FRMS, (e.g. displays of flood mapping at Council offices, preparation of flood awareness brochure for distribution with rate notices, etc). | rick staff - | tion Council | Implement flood ewereness and education
program for residents bordering the creeks. | | A solution of a solution of the th | Information from the Dam Safety Emergency Plans (DSRP) for Todkill Park and Culten Street dams should be incorporated into the Lechlan Shire Local Fibod Plan. | | 1 | of flood emergency planning. | | Priority 1: this measure would improve emergency response procedures and has a high priority. It does not require forwarement funding | NSW SES should finalke the preparation of the <i>Laching Shire Local Flood Plea</i> using information on flooding patterns, times of rise of floodwaters and flood prone areas identified in the <i>Flood Studies</i> and in this <i>FRRES</i> . | W SES | are cods | Ensure flood data in this Rhodplain Risk Management Study and Draft Plan are evaluable to the NSW SES for Improvement | | | Council's evaluation of development proposals to use data presented in the Fbod Studies and in this FRMS. | | | | | | The Minknum Floor Level (MFL) requirement for residential development to be 100 year flood level plus 600 mm in areas subject to MSF and MFE; and 300 mm for areas affected by MOF. Critical sarkices, educational establishments (e.g. schools) flood-vulnerable residential development (e.g. housing for aged persons with persons with disabilities) to be subject to more stringent centrols then other land uses. The illustration in Section 5.2.1 of the DFRMF (refer Chapter 5 of his report) demonstrates the application of the MFL regularments in areas subject to MSF, MTF and MOF. | | | | | | Graded set of flood controls based on location within the Flood Planning Area (FPA). For areas affected by MSF, the FPA is defined as land which lies below the peak 100 year ARI flood level plus 500 mm, while for areas affected by MTF, the FPA is defined as areas where depiths of inundation in a 100 year ARI event exceed 150 mm. For areas affected by MOF, the FPA is defined as the extent of the High and Law Hazard Floodway zones, as well as areas where depiths of inundation in a 100 year ARI event exceed 150 mm. The illustration in Section 5.8.1 of the DFRAP (refer Chapter 5 of this report) demonstrates the application of the variable freeboard approach (both positive and regalive) to the derivation of the FPA in these areas. | • | | | | to future development and has a high priority for inclusion in the FRMP. It does not require Government funding. | Flood Policy calairs for three types of flooding (ref. Section 2.7 and Appendix D): Main Stream Flooding (MRF) resulting from overflows of the main charnels of the Crookwell River and Klarcina Creek at Crookwell, Meadows Creek at Gurning, Collector Creek at Collector and Corrobove Creek at Taralga; ⁽¹⁾ Miner Tributary Flooding (MTF) resulting from overflows of the miner watercourses which drain the relatively steep hitsides bordering the aforementioned creeks and Major Overtand Flow (MOF) which is present elong several flow paths that run through the developed parts of the four villages. | | 00 | development in flood prone arress. | | Priority 1: this measure is designed to mitigate the flood risk | Control development in Roodplain as summerised in the draft Flood Policy (refer Section 3.5.1 and Appendix D). | Council's staff . | _ | 1. Implement flood related controls over future | | Priority | Features of the Measure | Required | | Моация | Cont'd Over 87 FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 28 # The Villeges of Crookwell, Gunning, Collector and Tarelge Floodplain Pisk Nanagement Study and Ciraft Plan # TABLE S1 RECOMMENDED MEASURES FOR INCLUSION IN UPPER LACHLAN DRAFT FLOODPLAIN RISK MANAGEMENT PLAN | | | \$360,080 | Total Estimated Cost | |---
---|--|---| | Priority 1: should Measure 6 find that the dams should be prescribed under the Dams Safety Act 1978, then this measure would be required by the NSW Dam Safety Committee and will have to be funded by Council and the owner of the Culien Street Dam. | The DSEP involves the following tasks (refer Table S.8 for Indicative budgets) Gestechnical testing and reporting on the dam embankment. Survey of the reservoir enses to assess volume of storage. | Council and -
Owner of Culi
Street Dam | 7. Dem Sefety Emergency Place for Tockill Park and Cullen Street dams at Crookwell. | | Priority 1: this measure would confirm whether the existing dams need to be prescribed under the Dams Safety and 1978, thereby requiring the owners to undertake regular surveillance of each dam and to also prepare a Dam Safety Emergency Plan. | Commission further hydraulic studies to assess the impact of a "Surny Day" failure on flooding behavior in adding development Prepare a submission to the NSW Dam Safety Committee which includes: a completed D1 form; and supporting documentation setting out the methodology which was adopted in the assessment of the impacts the failure of the enthernorms would have an flooding behaviour, including flood impact maps. | Council | Preparation of submission to the DSC to continu whether the Todidil Pert end Culian Street dams should be prescribed under the Dam's Safety Act 1978. | | Precify 2: the works comprising his measure and their may staging depends on the results of beasure 4 above. This imasure would reduce the risk of loss of life and also flood damages within the four villages. It would require Council and Government funding. Note the required funding is an indicative present worth cost based on preliminary energies undertaken in this FRMS. | Commission a private service provider to develop and implement a location-based severe weather warning sleft system for each of the four villeges. Commission Marty Hydraulic Laboratory to Install a telemetered water level recorder in Mesdow Creek, as well as a land-based broadcasting system in the village of Gunning. Preparation of an Operations & Maintenance Manual which sets out features of the system such as the protocols that will govern the dissemination of elects to occupiers of the floodplain, as well as metria-nance requirements. | \$320,800(1) | Implementation of location-based severe weather warring elet system for the four villages and a land-based flood warning system for the village of Gurning. | | Priority | - | Required | Меавиге | ### 1 INTRODUCTION ### 1.1 Study Background Upper Lachlan Shire Council (Council), commissioned the preparation of the Floodplain Risk Management Study and Draft Plan (FRMS&DP) for the villages of Crookwell, Gunning, Collector and Taralga in accordance with the New South Wales Government's Flood Prone Land policy. This report sets out the findings of the FRMS&DP investigation, which uses information on flooding patterns under present day conditions set out in The Village of Crookwell Flood Study, The Village of Gunning Flood Study, The Village of Collector Flood Study and The Village of Taralga Flood Study (herein, collectively referred to as the Flood Studies), all four of which were adopted by Council in December 2013. The Floodplain Risk Management Study (FRMS) reviewed baseline flooding conditions, including an assessment of economic impacts and the feasibility of potential measures aimed at reducing the impact of flooding on both existing and future development. This process allowed the formulation of the Draft Floodplain Risk Management Plan (DFRMP) for the four villages. ### 1.2 Background Information The following documents were used in the preparation of this report. - > Floodplain Development Manual (New South Wates Government (NSWG), 2005) - Upper Lachlan Strategy Vision 2020 (Parsons Brinckerhoff (PB), 2009) - Upper Lachlan Development Control Plan (Amendment No. 2) (Upper Lachlan Shire Council, 2010) - Upper Lachian Local Environmental Plan, 2010 - Four Villages Flood Studies Deta Collection Report (Lyall & Associates (L&A), 2012) - Flood Intelligence Report Lachlan Valley December 2010 and March 2012 Floods (L&A, 2013) - > The Village of Crookwell Flood Study (L&A, 2014a) - > The Village of Gunning Flood Study (L&A, 2014b) - > The Village of Collector Flood Study (L&A, 2014c) - > The Village of Taralga Flood Study (L&A, 2014d) ### 1.3 Overview of FRMS Report The results of the FRMS and the DFRMP are set out in this report. Contents of each Chapter of the report are briefly outlined below: • Chapter 2, Baseline Flooding Conditions. This Chapter includes a description of the drainage system and a review of existing flood behaviour at each of the four villages, as derived by the Flood Studies and describes how the hydraulic model developed as part of The Village of Crookwell Flood Study (L&A, 2014a) was updated to incorporate changes that have occurred to the topography and hydraulic structures since completion of the flood study. The Chapter also summarises the economic impacts of flooding on existing urban development, reviews Council's flood planning controls and management measures and NSW State Emergency Service's (NSW SES's) flood emergency planning. The Chapter also assesses the impacts of future urbanisation in the catchments, as envisaged by the Upper FVFRMS_V1_Report_{Rev 1.2}.doc November 2016 Rev. 1.2 Lachlan Strategy - Vision 2020 (PB, 2009) and the Upper Lachlan Local Environmental Plan, 2010. - Chapter 3, Potential Floodplain Management Measures. This Chapter reviews the feasibility of floodplain management options for their possible inclusion in the DFRMP. The list of measures considered is based on input from the Community Consultation process, which sought the views of residents of the four villages and business owners in regard to potential flood management measures which could be included in the FRMP. The measures are investigated at the strategic level of detail, including indicative cost estimates of the most promising measures and benefit/cost analysis. - Chapter 4, Selection of Floodplain Management Measures. This Chapter assesses the feasibility of potential floodplain management strategies using a multi-objective scoring procedure which was developed in consultation with the Floodplain Management Committee (FMC) and outlines the preferred strategy. - Chapter 5 presents the Draft Floodplain Risk Management Plan. The DFRMP comprises a number of non-structural measures which are aimed at increasing the flood awareness of the community and ensuring that future development is undertaken in accordance with the local flood risk. - Chapter 6 contains a glossary of terms used in the study. - Chapter 7 contains a list of References. Five technical appendices provide further information on the study results: Appendix A - Community Consultation summarises residents' views on potential flood management measures which could be incorporated in the FRMP. Appendix B – Flood Damages is an assessment of the economic impacts of flooding to existing residential, commercial and industrial development, as well as public buildings in the four villages. The damages have been assessed using the results of the Flood Studies, with the exception of Crookwell, where the results of the updated hydraulic model developed as part of the present investigation were used, an estimate of floor levels and characteristics of affected development derived from a combination of a "drive-by" property survey and used of Google Street View, as well as data from the LiDAR aerial laser scanning survey used in the Flood Studies. Appendix C - Assessment of Potential Flood Modification Measures deals with the assessment of a range of potential flood modification measures which are aimed at reducing the impact of flooding on existing development within the four villages. Appendix D — Draft Flood Policy presents guidelines for the control of future urban development in flood prone areas in the four villages. The guidelines cater for both Main Stream and Minor Tributary flooding (MSMTF) on the creek systems, as well as overland flooding resulting from surcharging of the trunk drainage systems in the overland flow paths draining the developed areas of each village. Appendix E - Flood Data for Individual Road and Pedestrian Crossings contains peak flood level, time to overtopping and duration of overtopping data derived from the hydraulic modelling at the major road and pedestrian crossings. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 2 ### 1.4 Community Consultation Following the Inception Meeting of the Floodplain Management Committee (FMC) which included Council, the Office of Environment and Heritage (OEH) and NSW SES, a Community Newsletter was prepared by the Consultants and distributed to residents and business owners by Council. The Newsletter contained a Community Questionnaire seeking details from the community of flood experience and attitudes to potential floodplain management options. Community
responses are summarised in Chapter 3 of the report, with supporting information in Appendix A. While the responses to the Community Questionnaire provided information on historic floods and flow patterns, in particular those resulting from severe storms which occurred in December 2010 and March 2012, the data were mainly of a qualitative nature. The views of the community on potential flood management measures to be considered in the study were also taken into account in the assessment presented in Chapter 3 of the report. The FMC reviewed the potential flood management measures developed in Chapter 3 and assessed the measures using the proposed scoring system of Chapter 4. The *DFRMS* and accompanying *DFRMP* were reviewed by the Committee and amended prior to public exhibition. ### 1.5 Flood Frequency and Terminology In this report, the frequency of floods is referred to in terms of their Average Recurrence Interval (ARI). The frequency of floods may also be referred to in terms of their Annual Exceedance Probability (AEP). The approximate correspondence between these two systems is: | Annual Exceedance Probability (AEP) - % | Average Recurrence
Interval
(ARI) – years | |---|---| | 1 | 100 | | 5 | 20 | | 20 | 5 | The AEP of a flood represents the percentage chance of its being equaled or exceeded in any one year. Thus a 1% AEP flood, which is equivalent to a 100 year ARI, has a 1% chance of being equaled or exceeded in any one year and would be experienced, on the average, once in 100 years; similarly, a 20 year ARI flood has a 5% chance of exceedance, and so on. The 100 year ARI flood (plus freeboard) is usually used to define the Flood Planning Level (FPL) and Flood Planning Area (FPA) for the application of flood related controls over residential development. While a 100 year ARI flood is a major flood event, it does not define the upper limit of possible flooding. Over the course of a human lifetime of, say 70 years, there is a 50 per cent chance that a flood at least as big as a 100 year ARI will be experienced. Accordingly, a knowledge of flooding patterns in the event of larger flood events up to the Probable Maximum Flood (PMF), the largest flood that could reasonably be expected to occur, is required for emergency management purposes. In the Flood Studies, flooding patterns were assessed for design floods ranging between a 20 year ARI event and the PMF. ### 2 BASELINE FLOODING CONDITIONS ### 2.1 Physical Setting ### Crookwell The village of Crookwell has a population of about 2,200 and is located about 45 km north of Goulburn on the Crookwell Road (Figure 1.1). The village is located in the headwaters of the Crookwell River catchment at the confluence of its principal tributary Kiamma Creek. The Crookwell River is a significant tributary of the Lachlan River and joins that stream upstream of Wyangala Dam. The majority of development is located on higher ground on the south-east side of the village in the vicinity of the commercial centre which is situated on Goulburn Street (Figure 2.1). Larger lot residential type development is located west of the Crookwell River and north of Kiamma Creek. ### Gunning The village of Gunning has a population of about 550 and is located on the Hume Highway between Yass and Goulburn in the headwaters of the Lachlan Valley (Figure 1.1). Meadow Creek (also known as Gunning Creek) flows in a northerly direction through the village and joins the Lachlan River a distance of 4 km downstream of the Main Southern Railway. Gunning has natural and built boundaries to urban development including the Main Southern Railway, the Hume Highway and Meadow Creek (Figure 2.2). There is a concentration of commercial development along Yass Street west of Meadow Creek. Low to medium density residential subdivisions surround the commercial centre to the north, as well as on the eastern side of Meadow Creek. ### Collector Collector has a population of about 150 and is located on the western side of the Federal Highway 50 km north of Canberra in the catchment of Collector Creek. The creek flows in a southerly direction around the western side of the village before continuing southwards where it discharges into Lake George (Figure 1.1). Collector Creek has a catchment area of about 140 km² at the village Most of the developed parts of Collector are situated on high ground above the Collector Creek floodplain (Figure 2.3). ### Taralga Taralga has a population of about 350 and is located on the western side of Corroboree Creek which flows in a north-easterly direction through the village area. Corroboree Creek is a minor tributary of the Wollondilly River and has a catchment area of about 13 km² at the village (Figure 1.1). The existing development sits on the western bank of Corroboree Creek outside the extent of main stream flooding (Figure 2.4). FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 4 ### 2.2 Drainage System ### Crookwell Figure 2.1 is a plan showing the main drainage lines and stormwater network in Crookwell. The village is drained by streams that have their headwaters in the foothills surrounding the town and flow generally in a northerly direction through the developed areas. The Crookwell River has a catchment area of about 66 km² at the Sewage Treatment Plant (STP), the location of which corresponds with downstream boundary of *The Village of Crookwell Flood Study*. Kiamma Creek, which drains the foothills to the east of Crookwell, flows in a westerly direction through the village and joins the Crookwell River downstream of Laggan Road. The Crookwell River and Kiamma Creek have a catchment area of 40 km² and 23 km², respectively, at the confluence. A major overland flow path runs in a northerly direction parallel to East Street between Cullen Street and Kiamma Creek at Harley Road. The overland flow path (herein referred to as the "Cullen Street Overland Flow Path") runs through existing residential and commercial/industrial development, as well as land identified for future development. The culvert crossings along the overland flow path are undersized and frequently surcharge, as highlighted by several respondents to the Community Questionnaire. The local drainage system through the developed parts of the village consist of a combination of piped and channel reaches. The system generally has a capacity of less than 20 year ARI, with any runoff that surcharges the system conveyed to the Crookwell River and Kiamma Creek in overland flow paths which are located along roads and in allotments. There are two large dams in Crookwell which are located upstream of existing development: the Council owned Todkill Park Dam on Kiamma Creek, which is located about 1.0 km upstream of Harley Road; and a privately owned dam which is located immediately upstream of Cullen Street on the Cullen Street Overland Flow Path (refer Figure 2.1, which shows the location of both dams relative to the developed parts of the village). As a failure of the dam embankments would result in a surge of water which would pose a threat to human life and cause damaging flooding, a preliminary investigation of the effects of dam failure on existing flood behaviour was undertaken as part of the present investigation. The findings of the preliminary dambreak study are presented in Section 2.11 of the report. Runoff from residential land north of McIntosh Road drains in a northerly direction in a series of channels and pipes to North Street. It is then conveyed as overland flow over a distance of about 1.0 km where it discharges into Licking Hole Creek (a tributary of the Crookwell River, which is not shown on Figure 2.1). ### Gunning Parts of Gunning are subject to main stream flooding from Meadow Creek, which has a catchment area of about 106 km² at the Hume Highway Bridge (refer Figure 2.2 for location). A minor tributary crosses the highway corridor west of the village where it joins Meadow Creek a distance of about 1.0 km downstream of the Main Southern Railway crossing. Figure 2.2 shows the principal overland flow paths which originate in the urban sub-catchments on the western floodplain and flow eastwards through the developed parts of the village, and then along Yass Street to Meadow Creek. Runoff generated by two small rural catchments which lie to the east of Gunning cross Collector Road and discharge to Meadow Creek downstream of the highway corridor, while a minor tributary also crosses Wombat Street and Collector Road on the FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 5 eastern side of the village where it discharges to Meadow Creek upstream of the Jack Shaw Bridge. Runoff from a catchment which rises to the north-east of the village discharges to Meadow Creek immediately upstream of the railway crossing. A trunk drainage line runs in an easterly direction along Yass Street extending from Nelanglo Street to Meadow Creek. The trunk drainage line controls the majority of the runoff which is generated by the residentially developed area which lies to the north of Yass Street and comprises a 900 mm diameter pipe at its point of discharge to Meadow Creek. The Village of Gunning Flood Study (L&A, 2014b) identified that there is limited pit inlet capacity in Yass Street to capture overland flow which discharges onto the road corridor from upslope areas. ### Collector While parts of Collector are subject to main stream flooding from Collector Creek, most of the existing development within the village is located on higher ground. Figure 2.3 shows the creek runs in a southerly direction around the western side of the village before crossing the Federal Highway to its south. Runoff from a 67 ha catchment which lies to the east of the Federal Highway is conveyed through the village via a series of culverts and shallow table drains before discharging to Collector Creek upstream of Federal Highway
Bridge No. 1 (denoted herein as the 'George Street Overland Flow Path'). Runoff from the developed parts of the village also causes nuisance drainage problems. ### **Taraiga** Corroboree Creek flows in a north-easterly direction immediately east of the village. The extent of main stream flooding from Corroboree Creek is confined to the immediate vicinity of its channel which is incised and of comparatively high hydraulic capacity. The crossing of Corroboree Creek at Walsh Street would be overtopped in the event of major flooding and would be impassable for several hours. Figure 2.4 shows the principal overland flow path which originates to the west of the village and flow in an easterly direction where they discharge to Corroboree Creek along its western bank. The drainage system in the village is of limited capacity, resulting in its frequent surcharge. ### 2.3 Recent Flood Experience Significant flood events occurred across the Upper Lachlan Shire most recently in December 2010 and March 2012. The December 2010 storm was the more severe of the two events at the four villages. The heaviest rainfall occurred over the raindays of 9 and 10 December, preceded by heavy falls at the end of November. The catchments would therefore have been rather wet and losses due to infiltration quite small. ### Crookwell The peak flows in the Crookwell River and Kiamma Creek resulting from the December 2010 storm were between 20 year and 100 year ARI, which were higher than would have been the case if the catchments were in a "dry" condition. For example, the rainfall that was recorded at Narrawa, which is located about 28 km to the west of Crookwell, equated to between a 4 and 10 year ARI rainfall event for storm durations which are critical for maximising peak flows in the Crookwell River catchment. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 6 Council indicated the existence of various overland flow paths during the December 2010 event as shown on Figure 2.1, in particular, the significant flow along the Cullen Street Overland Flow Path which surcharged the drainage system and flowed across Goulburn Street. The total two day rainfall at Crookwell on 29 February and 1 March 2012 was higher than that of the December 2010 event, however the catchment was significantly drier due to the lack of significant rainfall events in the preceding months. As a result, the peak flows generated by the storm were considerably less than those of a 20 year ARI event. This confirms the information contained in the responses to the Community Questionnaire that the December 2010 flood was a significantly greater event than the March 2012 event. ### Gunning Flooding was experienced in Gunning in the evening of 2 December 2010 (according to data received from the Community Questionnaire), when localised storm activity caused water levels in Meadow Creek to rise rapidly. While there were no reports of property experiencing above-floor inundation, the entrances to the Telegraph Motel and several residences which are located on the western bank at Meadow Creek upstream of the Jack Shaw Bridge were sand bagged as a precautionary measure. Floodwater also inundated parts of the Gunning Showground. Flooding was also experienced in Gunning on 9-10 December 2010 and 29 February and 1 March 2012. It is not possible to determine the nature of flooding that was experienced in Gunning during the two storm events as there is a lack of both quantitative data, in the form of stream flow and level records on Meadow Creek, and qualitative data, in the form of observed flooding and drainage patterns. However, it is noted that the rainfall that was recorded at Dalton, which is located about 9 km to the north-west of Gunning, equated to between a 3 and 5 year ARI rainfall event for storm durations that are critical for maximising peak flows in Meadow Creek at Gunning. ### Collector Residents responding to the Community Questionnaire as part of *The Village of Collector Flood Study* (L&A, 2014c) did not identify any flooding problems within the village as a results of the December 2010 and March 2012 storm events. It is noted that rainfall recorded at the Collector (Winderadeen) daily rain gauge, which is located about 0.6 km south of the village, during the December 2010 event were equivalent to a storm with an ARI of less than a year and between a 5 and 10 year event for the March 2012 storm event. ### Taralga The Village of Taraiga Flood Study (L&A, 2014d) found that for both the December 2010 and March 2012 storm events, rainfall intensities were only around the 1 to 2 year ARI level for the range of durations likely to be critical for maximising flows in Corroboree Creek and its tributaries (i.e. for storms up to 6 hour duration). The resultant peak flows in the drainage system were significantly less than the 20 year ARI design values, which confirmed data obtained from the Community Questionnaire that neither storm produced major flooding at Taraiga. ### 2.4 Design Flood Behaviour ### 2.4.1 Background The Flood Studies defined the nature of both main stream flooding and major overland flow in the four villages under present day conditions. The studies involved computer modelling of the catchments and floodplains to assess flow patterns and indicative extents of inundation for a range of design floods from 20 year ARI up to the Extreme Flood. The design storms used to determine flows in the drainage system were determined using accepted procedures set out in Australian Rainfall and Runoff (Institute of Engineers Australia (IEAust), 1998). They assumed that rainfall intensities were uniform over the areal extent of the contributing catchments, although intensities varied over the duration of the storm event. Rainfall depths experienced during historic storms on the other hand can vary considerably over the catchment areas. This is the reason for the variation between patterns of flooding derived for design floods and patterns actually experienced during historic events. The flood extents were defined from Light Detection and Ranging (LiDAR) aerial survey and field survey of the creeks, which were used to develop the hydraulic model of the drainage system used in the *Flood Studies*. The hydraulic analysis employed two-dimensional technology (in plan) and was based on a geometric model of the floodplain based on grid points of natural surface levels at 4 m grid spacing. The extents of inundation shown in this study are "indicative" reflecting the accuracy of the LiDAR survey (68 per cent of the points lie within +/- 150 mm of the true elevation). In order to create realistic results which remove most of the anomalies caused by inaccuracies in the LiDAR, a filter was applied to remove depths of inundation over the natural surface less than 50 mm. This had the effect of removing the very shallow depths which are more prone to be artifacts of the model, but at the same time giving a reasonable representation of the various overland flow paths. As far as flooding in the main arms of the creek systems is concerned, the filtering process did not have a significant effect on the representation of the areal extent of flooding in the major tributaries. It is to be noted that while the flood level and velocity data derived from the analyses are consistent throughout the model, the flood extent diagrams should not be used to give a precise determination of depth of flood affectation in individual allotments. ### 2.4.2 Recent Updates to the Flood Models Several recent improvements to the drainage system were identified in Crookwell at the commencement of the FRMS which required the flood models that were developed as part of *The Village of Crookwell Flood Study* to be updated. Changes to the structure of hydraulic model were required to reflect the following: - > stream clearing that had recently occurred along a reach of Kiamma Creek upstream of Harley Road; - > the upgrade of the pedestrian bridge at Brooklands Street; and - > the installation of several new pipes that run through a number of residential properties that are located in the vicinity of Northcott Street. The hydraulic model was also extended to the east of the Crookwell Golf Course to enable an assessment to be undertaken into the effect the construction of a flood retarding basin on the eastern side of Grange Road would have on flooding behaviour. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 8 A more detailed hydrologic model was also developed using the RAFTS software of the catchment which contributes flow to the Cullen Street Overland Flow Path. The resulting RAFTS model was tuned to peak flow estimates derived using the Probabilistic Rational Method, procedures for which are set out in IEAust, 1998. The Flood Studies adopted a seven times multiplier of the 100 year ARI discharge hydrographs and design rainfall depths (in areas where the direct rainfall-on-grid approach was adopted) for defining flooding patterns in the four villages during an extreme flood event. This approach was superseded as part of the FRMS by application of Probable Maximum Precipitation (PMP) estimates which were derived using the Generalised-Short Duration Method as described in BoM's update of Bulletin 53 (BoM, 2003) to the hydrologic models for each village. The results of running the hydraulic models using the resultant discharge hydrographs were used to update the extent of the floodplain at each village. By comparison of the values given in **Table 2.1**, application of the PMP estimates to the hydrologic models results in peak flows on the major creek systems that are between about 10 and 16 times the peak 100 year ARI flows at the four villages, which is significantly higher than the 7 times multiplier used in the *Flood Studies*. The reason for the larger multiplier is due to the rainfall excess for the PMP estimates being much larger than for the 100 year ARI event at the four villages,
combined with differences in the temporal variability of the two design storms. Further discussion on the difference the peak flow estimates for the Extreme Flood and PMF events has on flooding behaviour at the four villages is contained in the following section of the report. TABLE 2.1 COMPARISON OF EXTREME FLOOD AND PMF PEAK FLOWS (m³/s)⁽¹⁾ | | | 100 year ARI | Extreme | Flood | PMF | | | |-----------|------------------|---------------------|------------------------------------|------------|------------------------------------|------------|--| | Village | Tributary | Peak Flow
(m³/s) | Peak Flow ⁽²⁾
(m³/s) | Multiplier | Peak Flow ⁽²⁾
(m³/s) | Multiplier | | | Crookwell | Crookwell River | 127 | 890 | 7 | 1340 | 10.6 | | | Crookwell | Kiamma Creek | 63 | 440 | 7 | 660 | 10.5 | | | Gunning | Meadow Creek | 183 | 1280 | 7 | 2470 | 13.5 | | | Collector | Collector Creek | 222 | 1560 | 7 | 3520 | 15.9 | | | Taralga | Corroboree Creek | 23 | 160 | 7 | 250 | 10.9 | | - 1. Peak flows compared at the upstream extent of the hydraulic models. - 2. Peak flows rounded to nearest 10 m³/s. ### 2.4.3 Design Flooding Patterns ### Crookwell Figure 2.5 (2 sheets) shows the indicative extent and depth of inundation for the 100 year ARI design flood at Crookwell. The model reproduces the overland flow paths observed during major historic flood events (compare Figure 2.1 with Figure 2.5). Although several of the overland flow paths would convey significant flows during a 100 year ARI storm event, depths of inundation are generally less than 300 mm. There are isolated "hot spot" areas where the modelled depth of inundation will exceed 300mm, for example, along the Cullen Street Overland Flow Path and several trap low points in the northern part of the village. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 9 Figure 2.6 shows discharge and stage hydrographs at several locations and road crossings along the Crookwell River, Kiamma Creek and the Cullen Street Overland Flow Path. The results confirm the "flash flood" nature of the catchment, with water levels generally peaking two to four hours after the commencement of heavy rainfall. Figure 2.7 shows the difference in peak flood levels between the Extreme Flood and the PMF at Crookwell. Peak flood levels are up to 2 m higher along the Crookwell River and Kiamma Creek and up to 1.3 m on the Cullen Street Overland Flow Path. Peak flood levels are also up to 500 mm higher along the overland flow paths that are located in the vicinity of Brooklands Street, King Road and Saleyards Road. Figure 2.8 shows the indicative depths of above-ground and above-floor inundation in individual properties for the PMF event at Crookwell. One hundred and thirty (130) residential, 22 commercial and four public buildings in Crookwell will experience above-floor inundation during a PMF event. ### Gunning The indicative extent and depth of inundation for the 100 year ARI design flood at Gunning are shown on Figure 2.9. The width of flow on the floodplain narrows from over 400 m a short distance downstream of the highway corridor to about 100-150 m where the creek runs through the village. During major flood events, floodwater breaks out along the western bank of Meadow Creek in the vicinity of Cullavin Street where it inundates existing development that is located in a natural low point that is located on the southern side of Yass Street east of Warrataw Street. Depths of ponding in the low point will reach up to about 700 mm in a 100 year ARI event. Figure 2.10 shows discharge and stage hydrographs at several locations and road crossings along Meadow Creek, which highlights that main stream flooding at Gunning is of a "flash flooding" nature with water levels rising to their peak around four to six hours after the commencement of heavy rainfall. Figure 2.11 shows the difference in peak flood levels between the Extreme Flood and the PMF, while Figure 2.12 shows the indicative depths of above-ground and above-floor inundation for the PMF event at Gunning. Peak flood levels along Meadow Creek are up to 1.0 m higher for the PMF when compared to the Extreme Flood. Peak flood levels are controlled by the Main Southern Railway embankment, with depths of inundation in parts of the village reaching up to 6 m during a PMF event (i.e. assuming the railway embankment does not fail during an event of this magnitude). Fifty-five (55) residential, 20 commercial and 12 public buildings in Gunning will experience above-floor inundation during a PMF event. A sensitivity analysis showed that if the railway embankment was to fail during a PMF event, then there would be no existing development that would be impacted by the resulting flood wave on its downstream side. ### Collector Figure 2.13 shows the indicative extent and depth of inundation for the 100 year ARI design flood event at Collector. Widths of flow are generally about 400 m where Collector Creek runs to the west of the village, increasing to over 1 km wide along the western (upstream) side of the Federal Highway. Because the village is set on a peninsular of high ground, the majority of existing development is located on land which lies above the PMF. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 10 Runoff from the 67 ha catchment which lies to the east of the Federal Highway causes the drainage system which follows the line of the George Street Overland Flow Path to surcharge during relatively minor storm events. Depths of overland flow resulting from the surcharge of the drainage system reach up to 300 mm in existing residential development that is located in George Street and Bourke Street. The discharge and stage hydrographs shown on Figure 2.14 show that flooding on Collector Creek is of a "flash flooding" nature, with water levels rising to their peak around four to six hours after the commencement of heavy rainfall. The crossing of Collector Creek at Murray Street has a hydrologic standard of about 20 year ARI and would be overtopped by about 300 mm during a 100 year ARI event. The crossing would be inundated for a period of about six hours during a 100 year ARI event. Figure 2.15 shows the difference in peak flood levels between the Extreme Flood and the PMF, while Figure 2.16 shows the indicative depths of above-ground and above-floor inundation for the PMF event at Collector. Peak PMF levels in Collector Creek are up to 1.0 m higher than for the Extreme Flood, which increases the width of the floodplain by up to 100 m at several locations. The peak flood levels along the overland flow paths downstream of the Federal Highway are up to 300 mm higher than those derived for the Extreme Flood. Twenty (20) residential, one commercial and one public building in Collector will be subject to above-floor inundation during a PMF event. ### **Taralga** As shown on Figure 2.17, Corroboree Creek is capable of conveying major flood flows with limited overbank flow. Several overland flow paths that originate on the western side of the village join Corroboree Creek along its western bank between Cooper Street and Halls Road. Figure 2.18 shows discharge and stage hydrographs at key locations along Corroboree Creek. The results confirm the "flash flood" nature of the catchment, with water levels generally peaking within two hours after the commencement of heavy rainfall. Depths of flooding over the crossing at Walsh Street would reach up to 300 mm in a 100 year ARI event, with the deck of the bridge inundated for a period of up to two hours. Figure 2.19 shows that the peak flood levels along Corroboree Creek in the PMF event are up to 500 mm higher than those derived for the Extreme Flood. Depths along the overland flow path which runs through the village will also increase by up to 300 mm. Figure 2.20 shows the indicative depths of above-ground and above-floor inundation for the PMF event at Taralga. While existing development at Taralga is located outside the extent of main stream flooding, 15 residential, five commercial and one public building will be subject to above-floor inundation by overland flow. ### 2.5 Impact of Flooding on Critical Infrastructure Table 2.2 over the page summarises the impact that flooding has on critical infrastructure in each village. Critical infrastructure has been split into three categories; vulnerable infrastructure, emergency services and community assets. The locations of the community assets were identified by Council, while the location of the emergency services and vulnerable infrastructure has been taken from data provided by NSW SES as part of L&A, 2013. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 11 | | Community Assets | | | | | | 1 | Emergency Services | | | | | Vulnerable Infrastructure | | | | | | |--|------------------------|---------------------|-------------------------|--|--------------------|------------------------|-----------|----------------------------|----------------|-------------|------------------|----------------------|-------------------------------|---------------------|----------------------|----------|--------------|-----------| | "O" = Infrastructure not impacted by flooding. | Community Gas Cylinder | Major Road Crossing | Water Supply Dam / Bore | Sewage Pump Station / Treatment
Plant | Telephone Exchange | Electricity Substation | Ambulance | Fire & Rescue NSVV Station | Police Station | RFS Brigade | SES Headquarters | Aged Care Facilities | Caravan Park / Camping Ground | Child Care Facility | Educational Facility | Hospital | Directors | | | ed by flooding. | | × | 4 | 0 | 0 | 0 | 0 | 0 | 0 | D | o | 0 | 0 | ٥ | o | 0 | 20 year ARI | | | | • | × | 1 | × | o | 0 | ٥ | 0 | 0 | ٥ | 0 | 0 | × | o | 0 | 0 | 100 year ARI | Crookwell | | | 3 | × | - | × | 0 | 0 | 0 | 0 | 0 | o | o | × | × | × | × | o | PMF | | | | S * 2 | × | × | o | 0 | 0 | · | - | 0 | 0 | | ř |
| ь | 0 | 1 | 20 year ARI | | | | (a) | × | × | 0 | 0 | o | | | 0 | 0 | | | × | 0 | 0 | - | 100 year ARI | Gunning | | | 10 | × | × | × | × | o | | | × | × | Νŧ | SQ. | æ | × | × | 1 | PMF | | | | 0 | × | × | | 0 | , | f | | ٥ | 0 | 0 | | 3 | | o | | 20 year ARI | | | | 0 | × | × | , | 0 | 0 | 97 | | o | 0 | o | | | 1 | 0 | , | 100 year ARI | Collector | | | × | × | × | | 0 | 1 | | 51 | 0 | o | × | (3) | | | 0 | ı | PMF | | | | | o | 0 | 0 | 0 | 0 | | | o | × | | ٥ | | 0 | o | 1 | 20 year ARI | | | | ÷ | × | 0 | o | o | 0 | | , | o | × | , | 0 | | o | 0 | • | 100 year ARI | a age | | | ¥: | × | 0 | 0 | 0 | 0 | 3 | | × | × | , | × | 1 | ٥ | ٥ | ·* | 745 | | TABLE 2.2 IMPACT OF FLOODING ON CRITICAL INFRASTRUCTURE ### Crookwell Figure 2.21 shows the location of critical infrastructure at Crookwell relative to the extent of the 20 and 100 year ARI events, as well as the PMF. Access to parts of the village will be disrupted as the major road crossings of McDonald Street and Carrington Street on the Crookwell River; Harley Road, Saleyards Road and Laggan Road on Kiamma Creek and Wade Street and Goulburn Street on the Cullen Street Overland Flow Path would all be inundated during events as frequent as the 20 year ARI. The Crookwell Caravan Park on Laggan Road will be partially inundated, as will the sewage pumping station which is located in the camp ground during a 100 year ARI flood event. ### Gunning Figure 2.22 shows the location of critical infrastructure at Gunning relative to the extent of the 20 and 100 year ARI events, as well as the PMF. Whilst the causeway on Lerida Street will be inundated during freshes in Meadow Creek, access across the watercourse is maintained at the 100 year ARI as Yass Street will remain flood free. While the bore located in the Gunning Showground will be impacted during a 20 year ARI flood event, the town water supply, which is located north of the village will remain flood free for all events up to the PMF. Critical infrastructure, such as the child care facility on Biala Street and the Public School on Yass Street lie within the extent of the PMF, as do Rural Fire Service (RFS) Station and the Police Station. The Barbour Park Camping Ground is located on the left bank of Meadow Creek downstream of Yass Street, with additional camping facilities located on the southern side of the Gunning Showground. The Barbour Park Camping Ground is impacted by floods which are slightly larger than 20 year AR! and would be inundated to a maximum depth of about 6 m in a PMF event. Whilst the camping ground in the Gunning Showground is located above the peak 100 year AR! flood level in Meadow Creek, it would be inundated to a maximum depth of about 3.5 m depth in a PMF event. ### Collector As shown on Figure 2.23, the major crossing of Collector Creek on Murray Street will be inundated during a 20 year ARI flood event, while the Federal Highway is flood free during events up to 100 year ARI. A number of bores located on the Collector Creek floodplain and along the George Street Overland Flow Path will be impacted by a 20 year ARI flood event. The Collector based NSW SES Local Unit Headquarters and the community gas cylinder located on Bourke Street will be inundated in a PMF event. ### <u>Taraiga</u> Figure 2.24 shows that the major road crossings on Taralga Road and Walsh Street will be impacted by a 100 year ARI flood event. While the local RFS Station will be affected by relatively shallow overland flow during a 20 year ARI storm event, the depth of flooding will increase to over 1.0 m during a PMF event. The aged care facility on Bunnaby Street is affected by overland flow which approaches from the south. As the southern side of the building is located in an area of cut, overland flow which surcharges Bunnaby Street and enters the property is forced to pond up to a depth of about 230 mm adjacent to the reception area during a 100 year ARI storm event. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 13 ### 2.6 Flood Hazard and Hydraulic Categorisation of the Floodplain ### 2.6.1 General According to Appendix L of NSWG, 2005, in order to achieve effective and responsible floodplain risk management, it is necessary to divide the floodplain into areas that reflect: - 1. The impact of flooding on existing and future development and people. To examine this impact it is necessary to divide the floodplain into "flood hazard" categories, which are provisionally assessed on the basis of the velocity and depth of flow. This task was undertaken in the Flood Studies where the floodplain was divided into low hazard and high hazard zones. In this present report, a final determination of hazard was undertaken which involved consideration of a number of additional factors which are site specific to the urban areas of the four villages. Section 2.6.2 below provides details of the procedure adopted. - 2. The impact of future development activity on flood behaviour. Development in active flow paths (i.e. "floodways") has the potential to adversely re-direct flows towards adjacent properties. Examination of this impact requires the division of flood prone land into various "hydraulic categories" to assess those parts which are effective for the conveyance of flow, where development may affect local flooding patterns. Hydraulic categorisation of the floodplain was also undertaken in the Flood Studies and was reviewed in this present investigation. Section 2.6.3 below summarises the procedure adopted. ### 2.6.2 Flood Hazard Categorisation As mentioned above, flood prone areas may be *provisionally* categorised into *Low Hazard* and *High Hazard* areas depending on the depth of inundation and flow velocity. A flood depth of 1 m in the absence of significant flow velocity represents the boundary between *Low Hazard* and *High Hazard* conditions. Similarly, a flow velocity of 2.0 m/s but with a small flood depth around 200 mm also represents the boundary between these two conditions. Interpolation may be used to assess the hazard for intermediate values of depth and velocity. Flood hazards categorised on the basis of depth and velocity only are *provisional*. They do not reflect the effects of other factors that influence hazard. ### These other factors include: - 1. Size of flood major floods though rare can cause extensive damage and disruption. - 2. Effective warning time flood hazard and flood damage can be reduced by sandbagging entrances, raising contents above floor level and also by evacuation if adequate warning time is available. - 3. Flood awareness of the population flood awareness greatly influences the time taken by flood affected residents to respond effectively to flood warnings. The preparation and promotion by Council of Flood Studies and Floodplain Risk Management Studies and Plans increases flood awareness, as does the formulation and implementation of response plans by NSW SES (Local Flood Plans) for the evacuation of people and possessions. - 4. Rate of rise of floodwaters situations where floodwaters rise rapidly are potentially more dangerous and cause more damage than situations in which flood levels increase slowly. - Duration of flooding the duration of flooding (or length of time a community is cut off) can have a significant impact on costs associated with flooding. This duration is shorter in smaller, steeper catchments. - Evacuation problems and access routes the availability of effective access routes from flood prone areas directly influences flood hazard and potential damage reduction measures. Provisional hazard categories may be reduced or increased after consideration of the above factors in arriving at a final determination. A qualitative assessment of the influence of the above factors on the *provisional flood hazard* (i.e. the hazard based on velocity and depth considerations only) is presented in Table 2.3 over the page. Factors which would increase the flood hazard in Table 2.3 outweigh the considerations reducing hazard at Crookwell and Gunning, resulting in the need to adjust the extent of the provisional flood hazard in the two villages. In Crookwell, the extent of the High Hazard was increased along the Cullen Street Overland Flow Path on both the northern and southern side of Goulburn Street, while in Gunning, the extent of the High Hazard was increased to include areas of deeper ponding which are present on the southern side of Yass Street between Warrataw Street and Meadow Creek. In both cases, the provisional flood hazard for the 500 year ARI event was used as the basis for defining the additional areas of High Hazard. Figures 3.1 and 3.3 in Chapter 3 show the revised extents of Low Hazard and High Hazard in Crookwell and Gunning, respectively. ### 2.6.3 Hydraulic Categorisation of the Floodplain According to the NSWG, 2005, the floodplain may be subdivided into the following zones: - Floodways are those areas where a significant volume of water flows during floods and are often aligned with obvious natural channels. They are areas that, even if partially blocked, would cause a significant increase in flood level and/or a significant redistribution of flow, which may in turn adversely affect other areas. They are often, but not necessarily, areas with deeper flow or areas where higher velocities occur. - ➤ Flood Storage areas are those parts of the floodplain that are important for the temporary storage of floodwaters during the passage of a flood. If the capacity of a flood storage area is substantially reduced by, for example, the construction of levees or by landfill, flood levels in nearby areas may rise and the peak discharge downstream may be increased. Substantial reduction of the capacity of a flood storage area can also cause a significant redistribution of flood flows. - Flood Fringe is the remaining area of land affected by flooding, after floodway and flood storage areas have been defined. Development in flood fringe areas would not have any
significant effect on the pattern of flood flows and/or flood levels. In determining appropriate hydraulic categories, it is important that the *cumulative* impact of progressive development be evaluated, particularly with respect to floodway and flood storage areas. Whilst the impact of individual developments may be small, the *cumulative* effect of the ultimate development of the area can be significant and may result in unacceptable increases in flood levels and flood velocities elsewhere in the floodplain. | TABLE 2.3 INFLUENCE OF FLOOD RELATED PARAMETERS ON PROVISIONAL FLOOD HAZA | |---| | HAZARD | | Flood Flood awareness | Effective There is presently no formal warning time system in Crookwell. The w short and presently limited to three hours, which would te the provisional flood hezard. | Size of flood Main Stream fleoding and Klamma Creek incised floodplain as development is minor. While there will be hazerdous flow cond the Culen Street C during a 100 year AR would be sweet in the vicinity of Gou would be subject to during a slightly more. The provisional flood haze AR event. Depths of flow slow paths which run fire parts of the wilage and nature (up to 300 m with no sudden incressing the parts of the vilage and nature (up to 300 m with no sudden incressing the parts of the vilage and developing with inc. flood. | Parameter | | |--|---|--|---------------------------------------|-----------| | Flood awareness appears to be quite high | There is presently no formal flood warning system in Crookwell. The warning line is short and presently limited to about one to three hours, which would tend to increase the provisional flood hezard. | Main Stream fleeding in Crookwell Röver and Klamma Creek is confined to the incised floodplain and tisk to existing development is minor. While there will be isolated pockets of Wahle there will be isolated pockets of Wahle flow conditions affaing along the Culen Street Coveliant affaing along the Culen Street Coveliant River would be sweet insidential properties in the would be subject to High Rizzed flows during a slightly more intense storm event. The provisional flood bezzed was therefore revised in this area bezzed missing a slightly more intense storm event. The provisional flood hezzed for the 500 years and event. Depths of flow along the overland flow paths which run through the developed parts of the village are relatively stadow in nature (up to 300 mm) and slow morthing, with no sudden increases in depth of flow, islands or afternative flow paths developing with increasing severity of flood. | Flood Characteristics | Grookwali | | ۷ | ± | x | Influence on
Provisional
Hazard | | | Flood ewareness appears to be guite high | There is presently no formal flood warning system in Gunning. The warning time is short and presently limited to about two to three hours, which would tend to increase the provisional flood hazard. | The majority of development in Gurning is not affected by main atteam thooding for ewants up to the 100 year ARI. However floodwater does break-out of Meadow Creak at Culainn Street where it ponds in existing development which is located on the southern side of Yass Street between Warretaw Street and the watercourse. Peak flood levels in this area increase by up to 300 mm during slightly more intenses storm events, leading to the creation of hazardous flooding conditions (rafer inset on Figure 2.26). During more extreme events, the openings beneath the Main Southern Rallway restrict the flow which results in a relatively large data in flood levels immediately upstream of the rallway conduct. While flow velocities would reduce due to the backwater effect imposed by the rallway enbarkment and its openings, depths of flow along the residue) are relatively analow in health of the village exceed 6.0 m. Depths of flow eleme the residue invertand flow paths which run through the developed parts of the village exceed 6.0 m. Depths of flow along the residuely shallow in nature (up to 200 mm) and slow moving, with no sudden increases in depth of flow, Islands or alternative flow paths developing with increasing severity of flood. | Flood Characteristics | Gunning | | ٠ | ż | ż | Influence on
Provisional
Hazard | | | Flood awareness could potentially be quite | There is presently no formed flood werning system in Collector. The werning time is short and presently limited to about two hours, which would tend to increase the provisional flood hazard. | Edating development in Collector is located on land which lies above the 100 year ARI flood on Collector Creek, saver Low Flood latingts (refer Section 3.6.2) are present on the wide. flat floodpoin erass which is outside the RUS Villege zone. Depths of flow along the George Street Overland Flow Path which russ through the developed part of the village are shallow in nature (up to 300 mm) and slow moving with no sudden increases in depth of flow, islands or elements flow paths developing with increasing severity of flood. | Flood Characteristics | Collector | | ٠ | ż | 6 | Influence on
Provisional
Hazard | | | Flood evereness could potentially be quite
high due to the accurrence of the recent | There is presently no formal flood warning system in Taralga. The warning time is short and presently limited to about one hour, which would tend to increase the provisional flood hazard. | Main Stream flooding from Corrobores Creek is generally contained within the laber's area of the watercours during major flood events. Depths of flow along the eventand flow paths which run through the developed parts of the village are comparatively shallow in nature (up to 500 mm) and stow moving, with no sudden increases in depth of flow, islands or alternative flow paths developing with increasing severity of flood. | Flood Characteristics | Taraiga | | 7 | ź | 0 | Provisional
Hazard | | Cont'd Over Lydi & Associates FVFRMS_V1_Report_IRev 1.2].doc November 2016 Rev. 1.2 Page 17 Lyell & Associates | | 퐄 | | |---|----------------|-----| | | FLUENC | | | Œ | 鱼 | | | h | | | | ı | 입 | | | ı | ä | | | ı | F FLOO | | | ı | 8 | | | ı | REL | | | | Σ | | | ı | 酉 | _ | | ı | ž | Æ | | ı | S | Ĕ | | ŀ | £ | N | | ı | 讄 | 3 (| | | 꿇 | 5 | | ŀ | õ | 共 | | ı | N PROVI | = | | ı | 꺗 | | | | | | | | Ĭ | | | | OBIAC | | | | | | | | | | | | | | | | DESIGNAL FLOOD | | | | | | | | | | | | | | | | Parameter | Rate of rise
and velocity
of floodwaters | Duration of flooding | problems | |------------|---------------------------------------|---|--|---| | Graditwell | Flood Characteristics | Flooding is of a "fash flooding" nature, with the main streams rising to a peak within four hours of the commencement of heavy rainfall. The would tend to increase the flood hexard, eithough the hexard could be reduced by educating the community about flood risk. | The duration of the flood peak is quite short, between four to six hours for the design stoms shown on Figure 2.5. | While access across the Crookvell River and Klemma Creek is cut, self-evacuation out of flooded areas to higher ground via the local road network is possible during major flood events. | | | Influence on
Provisional
Hazard | \$ | 0 | 7 | | gaining | Flood Characteristics | Flooding is of a "fleet flooding" nature, with the main streams rising to a peak within three hours of the commencement of heavy relinfall. This would lend to increase the flood hazard, although the hazard could be reduced by educating the community about flood risk. | The duration of the flood peak is quite short, approximately eight hours for the design stoms shown on Figure 2.16. | White evacuation of residential ereas to higher ground and the Hune Highway (via
Gundarco Road) is maintained during major flood awarst, parts of the floodplain would become isolated during the rising timb of a flood and possibly inundated with increasing flood magnitude. | | | Influence on
Provisional
Hazard | ± | 19 | ± | | Collector | Flood Characteristics | Plooding is of a Thesh flooding' nature, with the main streams rising to a peak within four hours of the commencement of heavy rainfall. This would jend to increase the flood hazard, although the hazard could be reduced by educating the community about flood risk. | The duration of the flood peak is quite short, approximately six hours for the design storms shown on Figure 2.14. | White evacuation of realdential areas to higher ground and the Faderal Highway (via Gundaroe Road) is maintained during major flood events, patts or the floodplain would become isolated during the nising limit of a flood and possibly inundated with increasing flood anginitude. | | | influence on
Provisional
Hazard | * | 0 | ± | | Taraiga | Flood Characteristics | Flooding is of a "flash flooding" nature, with the main streams rising to a peak within two hours of the commercement of heavy rainfell. This would tend to increase the flood hozerd, although the heared could be reduced by aducating the community about flood risk. | The duration of the flood peak is quite short, approximately three hours for the design storms shown on Figure 2.18. | Evecuation of residential areas to higher ground is metitained during major fleed events. | | 4 | Influence on
Provisional
Hazard | * | 0 | ÷ | The Villeges of Crookwell, Gunning, Collector and Taraiga Ficodpiein Risk Management Study and Draft Plan The procedure adopted for hydraulic categorisation is discussed in more detail in the *Flood Studies*. It was based on the experience of the flood modellers, together with consideration of the findings of previous investigators who have defined floodway areas mainly on the basis of velocity and depth of flow. The ability of the TUFLOW hydraulic model to show both the direction and velocity of flow as scaled vector arrows also assisted with the assessment of the significance of the various flow paths. As part of the FRMS, the threshold depth for defining flood storage areas was reduced from 1 m to 0.4 m. Due to the significant increase in flood risk that occurs at Gunning on the southern (upstream) side of Yass Street east of Warrataw Street during floods slightly larger than 100 year ARI, this area was subdivided into floodway, flood storage and flood fringe areas based on flooding behaviour relating to both the 100 and 500 year ARI events. This information has been used in the development of the flood hazard maps which are contained in the draft Flood Policy (refer **Appendix D** for further details). ### 2.7 Recommended Sub Division of the Floodplain The draft Flood Policy (Appendix D) used the concepts of flood hazard and hydraulic categorisation outlined in the previous sections to develop flood related controls for future development in flood prone land at the four villages. The Flood Policy caters for the three types of flooding in the four villages: - Main Stream Flooding (MSF) resulting from overflows of the main channels of the Crookwell River and Kiamma Creek at Crookwell, Meadows Creek at Gunning, Collector Creek at Collector and Corroboree Creek at Taralga. These flows may be several metres deep in the channels and relatively fast moving with velocities up to 2 m/s. For planning purposes, flooding along the Cullen Street Overland Flow Path at Crookwell has been assessed in the same way as flow in the channels of the Crookwell River and Kiamma Creek (i.e. as MSF). - ➤ Minor Tributary Flooding (MTF) resulting from overflows of the minor watercourses which drain the relatively steep hillsides bordering the aforementioned creeks. While flow in the inbank area of the minor watercourses is generally greater than 0.5 m, overbank flow is relatively shallow and slow moving with velocities typically less than 0.5 m/s. - ➤ Major Overland Flow (MOF) occurs along several flow paths that run through the developed parts of the four villages. Flows on the MOF paths would typically be around 150 300 mm deep, travelling over the surface at velocities less than 0.5 m/s. Figures D1.1, D1.2, D1.3 and D1.4 in Appendix D are extracts from the Flood Planning Map at Crockwell, Gunning, Collector and Taralga, respectively. The figures include flooding in the main streams and minor tributaries in the presently rural parts of the study area which border the four villages, as well as the overland flow paths which run through their developed parts. The extent of the Flood Planning Area (FPA) (the area subject to flood related development controls) is shown in a solid red colour in Figures D1.1, D1.2, D1.3 and D1.4 and has been defined as follows: - > In areas subject to MSF, the FPA is based on the traditional definition of the area inundated by the 100 year ARI plus 500 mm freeboard. - > In areas subject to MTF, the FPA is defined as areas where depths of inundation in a 100 year ARI event exceed 150 mm. 18 In areas subject to MOF, the FPA is defined as the extent of the High and Low Hazard Floodway zones, as well as areas where depths of inundation in a 100 year ARI event exceed 150 mm. The illustration in **Section 5.8.1** of the *DFRMP* (refer Chapter 5 of this report) demonstrates the application of the variable freeboard approach (both positive and negative) in the derivation of the FPA in areas affected by MSF, MTF and MOF. It is proposed that properties intersected by the extent of the FPA would be subject to S149 flood affectation notification and planning controls graded according to flood hazard (dependent on depth of inundation and flow velocity). Annexures 2.1 and 2.2 in Appendix D set out the graded set of flood related planning controls which have been developed for the four villages. Annexure 2.1 deals with areas subject to both MSMTF, while Annexure 2.2 deals with areas subject to MOF. Figures D1.5, D1.6, D1.7 and D1.8 in Appendix D are the Development Controls Matrix Map for Crookwell, Gunning, Collector and Taralga, respectively and show the areas over which both Annexures 2.1 and 2.2 apply. Minimum floor level (MFL) requirements would be imposed on future development in properties that are identified as lying either partially or wholly within the extent of the FPA shown on the Flood Planning Map. The MFL's for all land use types affected by MSF and MTF is the level of the 100 year ARI flood event plus 500 mm freeboard, while the MFL's for all land use types affected by MOF is the level of the 100 year ARI flood event plus 300 mm freeboard. For areas outside the FPA shown on the Flood Planning Map, the MFL for all land use types is the level of the 100 year ARI flood event plus 500 mm freeboard. Figures D1.9, D1.10, D1.11 and D1.12 in Appendix D are the Flood Hazard Map for Crookwell, Gunning, Collector and Taralga, respectively. The figures show the subdivision of the floodplain into a number of categories which have been used as the basis for developing the graded set of planning controls. The floodplain has been divided into the following four categories in areas that are affected by MSMT flooding: - Inner Floodplain (Hazard Category 1), which is shown in solid red colour. This zone comprises areas where factors such as the depth and velocity of flow, time of rise, isolation on Low Flood Islands and evacuation problems mean that the land is unsuitable for some types of development. It includes areas of High and Low Hazard Floodway, Flood Storage, Flood Fringe, Intermediate Floodplain and Outer Floodplain areas. Erection of a buildings and carrying out of work not permitted; use of land, subdivision of land and demolition subject to State Environmental Planning Policies and Local Environmental Plan provisions are not permitted in the zone. - Inner Floodplain (Hazard Category 2), which is shown in solid yellow colour. This zone comprises Low Hazard Floodway and Flood Storage areas where development other than Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable development is permitted provided it is capable of withstanding hydraulic forces and sited on the allotment to minimise adverse redirections of flow towards adjacent properties. Council may require a Flood Risk Report if it considers that the proposal has the potential to significantly affect flooding behaviour in adjacent properties. - ➤ Intermediate Floodplain, which is shown in solid blue colour. This area is the remaining land lying outside the extent of the Inner Floodplain zones, but within the FPA. While land use permissibility would be as specified by State Environmental Planning Policies or the Local Environmental Plan, Essential Community Facilities, Critical Utilities and Flood FVFRMS_V1_Report_{Rev 1.2}.doc November 2016 Rev. 1.2 Page 19 Vulnerable development such as schools and housing for aged and disabled persons would be subject to additional controls as set out in Annexure 2.1 of the Flood Policy. > Outer Floodplain, which is shown in solid cyan colour. This area represents the remainder of the floodplain between the Intermediate Floodplain and the extent of the Probable Maximum Flood (PMF) (that is, the extent of the floodplain). While this area is outside the extent of the FPA, controls on Essential Community Facilities, Critical Utilities schools and Flood Vulnerable development identified in Annexure 2.1 of the Flood Policy would apply. The floodplain has been divided into the following two additional categories in areas that are affected by MOF: - > High Hazard Floodway, which is shown in solid orange colour. Future development in this area is not permitted under the Flood Policy. - > Low Hazard Floodway / Flood Storage, which is shown in solid green colour. Residential, commercial and industrial type development can occur in this zone
subject to compliance with a prescribed set of flood related development controls. The Intermediate Floodplain zone in areas subject to MOF is the remaining land lying outside the extent of the Floodway and Flood Storage areas but within the FPA, while the Outer Floodplain zone represents the remainder of the floodplain between the Intermediate Floodplain and the extent of the PMF. Flood related planning controls in these two areas are similar to those that apply to development in areas subject to MSF and MTF, with the notable exception being the adoption of a reduced freeboard for defining MFL's. ### 2.8 Council's Existing Planning Instruments and Policies ### 2.8.1 General The Upper Lachlan Local Environmental Plan, 2010 (Upper Lachlan LEP 2010) is the principal statutory planning document used by Council for controlling development by defining zoning provisions, establishing permissibility of land use and regulating the extent of development in the town. The *Upper Lachlan Strategy – Vision 2020* (PB, 2009) examined the economic, social and environmental settings of the Shire and prepared land use strategies for the benefit of the Upper Lachlan LEP 2010. The *Upper Lachian Development Control Plan 2010* (**Upper Lachian DCP 2010**) supplements the Upper Lachian LEP 2010 by providing general information and detailed guidelines and controls which relate to the decision making process. ### 2.8.2 Land Use Zoning - Upper Lachlan Local Environment Plan 2010 Figure 2.29 shows the zonings incorporated in the Upper Lachlan LEP 2010 superimposed on the drainage system at Crookwell. Most of the urban area of Crookwell is zoned R2 Low Density Residential and R5 Large Lot Residential. The urban area also includes land zoned: > B2 Local Centre > RE1 Public Recreation > B4 Mixed Use > RU1 Primary Production > IN2 Light Industrial > SP1 Special Activities FVFRMS_V1_Report_{Rev 1.2].doc November 2016 Rev. 1.2 Page 20 Figure 2.30 shows that most of the urban area of Gunning is zoned RU5 Village, with the surrounding areas bordering the village zoned R5 Large Lot Residential, RU4 Rural Small Holdings and RU2 Rural Landscape. Figure 2.31 shows that the majority of Collector is zoned *RU5 Village* with the exception of land lying north of Church Street which is zoned *RU2 Rural Landscape*. The village is surrounded by land zoned *RU1 Primary Production*. Figure 2.32 shows that most of Taralga is zoned RU5 Village with areas in the headwaters of the MOF paths west of Martyn Street and south of Cooper Street zoned R5 Large Lot Residential. The farm land surrounding Taralga is zoned RU1 Primary Production. ### 2.8.3 Flood Provisions - Upper Lachlan LEP 2010 Clause 6.1 of Upper Lachlan LEP 2010 entitled "Flood Planning" outlines its objectives in regard to development of flood prone land. It is similar to the standard Flood Planning Clause used in recently adopted LEPs in other NSW country centres and applies to land beneath the FPL. The FPL referred to is the 100 year ARI flood plus an allowance for freeboard of 500 mm. The area encompassed by the FPL (i.e. the FPA) denotes the area subject to flood related development controls, such as locating development outside high hazard areas and setting minimum floor levels for future residential development. It is now standard practice for the residential FPL to be based on the 100 year ARI flood plus an appropriate freeboard unless exceptional circumstances apply. Whilst appropriate for Main Stream flooding, the present clause 6.1 would have resulted in a large part of the urban areas of the four villages which are affected by shallow overland flow being subject to flood affectation notification on Planning Certificates issued under S149 of the EP&A act. It would have also resulted in flood related development controls being applied to land which is presently rural in nature where the flood risk is very low. It is recommended that clause 6.1 of Upper Lachlan LEP 2010 be amended to more accurately define the extent of land which clause 6.1(2)(b) applies. It is also recommended that the Flood Planning Map not be attached to the Upper Lachlan LEP 2010, as this way it can be updated without the need to update the LEP. Recommended amendments to the wording of clause 6.1 (5) are set out in Section 3.5.1.4 of the report. Upper Lachlan LEP 2010 would need to be supported by the *Flood Policy* in Appendix D which sets out specific requirements for development in flood liable areas based on the flood extent and hazard mapping for the four villages. Figures D1.1, D1.2, D1.3 and D1.4 in Appendix D are extracts from the *Flood Planning Map* referred to in clause 6.1 and relate to Crookwell, Gunning, Collector and Taralga, respectively. It is also recommended that a new floodplain risk management clause be include in *Upper Lachlan LEP 2010*. The objectives of the new clause are as follows: - > in relation to development with particular evacuation or emergency response issues (e.g. schools, group homes, residential care facilities, hospitals, etc.) to enable evacuation of land subject to flooding in events exceeding the MFL; and - > to protect the operational capacity of emergency response facilities and critical infrastructure during extreme flood events. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 21 The new clause would apply to land identified as Outer Floodplain (i.e. land which lies between the FPA and the PMF). Suggested wording in relation to this new clause is given in Section 3.5.1.4. ### 2.8.4 Flooding and Stormwater Controls - Upper Lachlan DCP 2010 Section 4.5 of *Upper Lachian DCP 2010* sets out the controls that apply to future development in relation to flooding and stormwater drainage in the four villages. Section 4.5.1 titled "Flood affected lands" states that the objectives of the controls are: - "To maintain the existing flood regime and flow conveyance capacity, - To enable safe occupation and evacuation of existing dwellings situated on land subject to flooding, and - To limit uses to those compatible with flow conveyance function and flood hazard." The controls set out in Section 4.5.1 apply to areas that are subject to flooding during a 100 year ARI event or land identified as being flood prone on the *Flood Planning Map*. They also apply to areas that Council consider to be potentially flood prone. A Flood Study is to be prepared to support a development application demonstrating that the proposed development is consistent with the controls set out in *Upper Lachlan DCP 2010*. In flood prone areas, Upper Lachlan DCP 2010 states that works cannot involve: - > "any physical alteration to a waterway or floodway including vegetation clearing, or - net filling exceeding 50 m³ (cubic metres), any reductions of on-site flood storage capacity is avoided and any changes to depth, duration and velocity of floodwaters of all floods up to and including 100 year ARI are contained within the site, or - > any changes in the flood characteristics of the 100 year ARI outside the subject site that result in: - loss of flood storage, or - loss of/changes to flow paths, or - acceleration or retardation of flows, or - any reduction of warning times elsewhere on the floodplain." All built form, infrastructure (unless designed to be inundated) and open space must be located on land that would not be subject to flooding during a 100 year ARI flood event. Furthermore, where there is existing development located on land that is subject to flooding during a 100 year ARI event, this development/activity must not be intensified through further development. It is noted that the controls set out in Section 4.5.1 do not state a minimum freeboard requirement for development located in flood prone areas. Section 4.5.2 titled "Stormwater management" states that the objectives of the controls are to improve water quality and conservation, reduce runoff volumes and increase onsite storage of rainwater. Upper Lachlan DCP 2010 states that proposed development must incorporate treatment methods and an approach to water management that: "reduce demand for potable water, - Requires stormwater discharge for all proposed development be equivalent with levels and volumes of discharge for the pre-developed condition on site, [emphasis added] - Maximizes pervious surfaces where possible, and - Encourages the reuse of stormwater and greywater.* It is assumed that the reference to "level" and "volume" of runoff relates to the rate of flow discharging from the development site. Section 4.5.4 titled "Overland Flow Paths" states that the objectives of the controls are: - "To maintain the existing stormwater drainage corridors and watercourses to provide for extreme surface water flows - To provide a clear overland flow path for urban stormwater runoff when rainfall intensities exceed the capacity of the existing infrastructure or when the piped system fails - To minimize damage to private and public property from surface water flows during and after high intensity rainfall events - To minimize development in drainage corridors that will restrict or divert urban runoff from following a natural flow path* Upper Lachlan DCP 2010 states that a detailed site survey of each potential development site is to be submitted with the development application where the land is located within the four villages. The site survey is to be accompanied by a plan identifying the following: - the extent of the contributing catchment areas; - > runoff volumes for the 1, 5, 10, 20, 50 and 100 year ARI storm events; and - > the extent of the affected area. Upper Lachlan DCP 2010 states that the general design principles which are to be followed include: - "minimum width of overland flow path to be ten metres (10.0 metres) - floor levels of dwellings adjacent to overland flow paths must be a minimum three hundred millimetres (300 mm) above existing ground level - roadways, footpaths and buildings set backs from boundaries can be used as
overland flow paths - overland flow paths must be protected by creation of easements over the full width of the designated corridors - diversion or filling of existing watercourses is not generally a solution as urban runoff will follow former natural gradelines in extreme rainfall events. It is noted that the minimum freeboard requirement of 300 mm to the finished floor levels of dwellings located adjacent to overland flow paths is consistent with the controls set out in the draft *Flood Policy* (refer **Appendix D**). ### 2.9 Potential Impacts of Future Urbanisation Future urbanisation has the potential to increase the rate and volume of runoff conveyed along the various overland flow paths that run through the four villages, as well as increase the frequency of surcharge of the local stormwater drainage system. It is also likely to result in changes in the existing drainage system. While existing minor watercourses are likely to be retained and formalised in drainage reserves, piped drainage systems associated with urban subdivisions will result in significant amendments to existing overland flow paths leading to the watercourses. The impact future urbanisation could have on flooding and drainage patterns in the four villages should appropriate controls not be imposed by Council was assessed assuming the following maximum fraction impervious values: - > R2 Low Density Residential zoned land 50%; - > RU5 Village 15%; and - > R2 Low Density Residential 10%. Figure 2.29 shows the future urbanisation within Crookwell if uncontrolled would impact flooding behaviour along the Cullen Street Overland Flow Path, as well as the overland flow paths that are located on the western side of the village between Brooklands Road and MacDonald Street. Depths of overland flow in all three overland flow paths would be increased by up to 200 mm, where it would exacerbate flooding conditions in existing development. The extent of land affected by MOF would also increase as a result of uncontrolled development. Future urbanisation within Gunning and Collector has the potential if uncontrolled to increase depths of overland flow in a few isolated areas by up to 100 mm (refer Figures 2.34 and 2.35, respectively), while at Taralga it would increase depths of overland flow in the majority of the overland flow paths by up to 200 mm (refer Figure 2.36). There would also be a noticeable increase in the extent of land affected by MOF in Taralga as a result of uncontrolled development. There are minor reductions in peak flood levels shown to be present along the major watercourses at the four villages. This is due to the adoption of higher hydraulic roughness values in the developed areas which has the effect of attenuating overland flow on its approach to the receiving drainage lines. ### 2.10 Potential Impacts of Climate Change Consideration was given to the impacts on design flood levels of future climate change when estimating freeboard requirements on minimum floor levels of future. OEH recommends that its guideline *Practical Consideration of Climate Change*, 2007 be used as the basis for examining climate change in projects undertaken under the State Floodplain Management program and the *FDM*, 2005. The guideline recommends that until more work is completed in relation to the climate change impacts on rainfall intensities, sensitivity analyses should be undertaken based on increases in rainfall intensities ranging between 10 and 30 per cent. On current projections the increase in rainfalls within the service life of developments or flood management measures is likely to be around 10 per cent, with the higher value of 30 per cent representing an upper limit which may apply near the end of the century. Under present day FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 24 climatic conditions, increasing the 100 year ARI design rainfall intensities by 10 per cent would produce a 200 year ARI flood; and increasing those rainfalls by 30 per cent would produce a 500 year ARI event. By inspection of the afflux data (i.e. increase in peak flood levels compared with present day conditions) derived from the hydraulic modelling undertaken in the *Flood Studies*, the impact of climate change on flooding patterns in the four villages may be summarised as follows: ### Crookwell - 1. For the 10 and 30 per cent increase in 100 year ARI rainfalls, there would be an increase of up to 200 mm and 400 mm respectively along the length of the main arms of the Crookwell River and Kiamma Creek. The increase in peak flood levels does not significantly widen the extent of inundation due to the incised nature of the floodplain, except in the vicinity of the confluence between the Crookwell River and Kiamma Creek where the Crookwell Caravan Park would be inundated as a result of an increase in rainfall intensity. - 2. For the 10 per cent increases in 100 year ARI rainfalls, the corresponding increase in flood levels in the areas of Crookwell subject to overland flow would be up to 50 mm with only a very limited increase in the extent of flooding. For the 30 per cent increase, the rise in flood levels would be up to 100 mm. Existing development located along the overland flow paths that are located in the vicinity of in Brooklands Street, King Road, Saleyards Road and Wade Street would be most affected by a 30 per cent increase in rainfall intensity. - 3. A minor increase in flow velocities would be experienced along the Crookwell River and Kiamma Creek and along the various overland flow paths due to the increased discharges and depths of inundation. - 4. No islands or new flow paths would be created. Flow would continue to follow its existing course along the central threads of the creeks and various overland flow paths that run through the urbanized parts of the village. ### Gunning - For the 10 per cent increase in 100 year ARI rainfalls, there would generally be a 200-300 mm increase in peak flood levels in Meadow Creek. There would be a small increase in the extent of inundation along Meadow Creek, with the exception of the area upstream of Yass Street east of Warrataw Street. - For the 30 per cent increase in 100 year ARI rainfalls, there would generally be a 300-500 mm increase in peak flood levels in Meadow Creek. The exception would be areas upstream of Jack Shaw Bridge (Yass Street) and the Main Southern Railway were peak flood levels would be increased by over 700 mm and 600 mm, respectively. - The increase in the depth of inundation which would occur on the upstream side of Yass Street east of Warrataw Street would result in high hazard flooding conditions arising in several properties. - 4. For the 10 and 30 per cent in rainfalls, peak flood levels in the tributaries which drain the hills to the east of Meadow Creek will increase by up to 200 and 300 mm, respectively. The extent of inundation along these tributaries would not widen significantly owing to the relatively steep nature of the surrounding overbank area. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 25 5. Increases in peak flood levels of up to 50 and 100 mm would occur along the various overland flow paths as a result of a 10 and 30 per cent increase in rainfall intensity, respectively. ### Collector - For the 10 per cent increase in 100 year ARI rainfalls, there would be an increase in peak flood levels of up to 200 mm on Collector Creek. For the 30 per cent increase, the rise in flood levels would generally not exceed 300 mm. The width of the floodplain will not increase significantly as a result of an increase in rainfall intensity. - For both the 10 and 30 per cent increases in 100 year ARI rainfalls, the peak flood levels in areas subject to overland flow will generally increase by up to 50 mm, with slightly greater depths of flow occurring along the George Street Overland Flow Path. - 3. A minor increase in flow velocities would be experienced along Collector Creek and the various overland flow paths due to the increased discharges and depths of inundation. - 4. No islands or new flow paths would be created. Flow would continue to follow its existing course along the central thread of the creek and overland flow paths. ### <u>Taralga</u> - 1. For the 10 per cent increase in 100 year ARI rainfalls there would be an increase in peak flood levels of up to 200 mm on Corroboree Creek and up to 50 mm in the overland flow paths. For the 30 per cent increase, peak flood levels on Corroboree Creek would generally increase by up to 300 mm, while depths of flow along the overland flow paths would increase by up to 100 mm. - 2. The extent of inundation along Corroboree Creek would not increase significantly owing to the incised nature of the creek. - 3. While flow would continue to follow its existing course along the overland flow paths, some widening of their extents would occur throughout the village. - 4. A small increase in flow velocities within the inundated areas would occur, but no sudden increase to provisional flood hazard would be experienced. - 5. No islands or new flow paths would be created. Flow would continue to follow its existing course along the central thread of the creek and overland flow paths. Given the current uncertainties in the estimation of increased rainfalls resulting from climate change and its timeframe, it is considered that its impacts on peak flood levels in areas subject to flooding could reasonably be catered for within the proposed freeboards (500 mm for MSMTF and 300 mm on MOF paths), with a reasonable margin remaining for other uncertainties such as local hydraulic effects and wave action. ### 2.11 Impacts of a Potential Dam Failure on Flooding Behaviour ### 2.11.1 General The Dam Safety Committee (DSC) under its statutory obligations of the Dam Safety Act, 1978 ensures that all dams are designed and operated to a standard to minimise the risks to the community. The DSC requires all owners of prescribed dams (i.e. where lives
may be lost in the event of dam failure) have full responsibility to determine and put in place appropriate actions and programs to ensure ongoing safety of their dams. The DSC assigns "Consequence Categories" to a dam according to the seriousness and magnitude of the adverse consequences affecting a community which could be expected from that failure. The procedure for assessing Consequence Categories is set out in the DSC's publication DSC3A, "Consequence Categories for Dams" and ANCOLD, "Guidelines on the Consequence Categories for Dams". Two types of dam failure are recognised for the purposes of determining a dam's Consequence Category, as follows: - > Failures that occur without attendant natural flooding, giving rise to the "Sunny Day" Consequence Category. - > Failures that occur in association with a natural flood, giving rise to the "Flood" Consequence Category. There are seven possible Consequence Categories for a particular dam ranging between Very Low, through Significant and High, to Extreme. Consequences are based on the "Population at Risk" and probable "Loss of Life". The DSC uses the Consequence Category to determine whether the dam is "prescribed". Owners of High Consequence and Extreme Consequence dams are to have in place automatic telemetered monitoring of the storage levels and preferably rainfall and seepage. Measurements of seepage are required to monitor potential piping incidents. The DSC requires dam-break studies for Significant, High and Extreme Consequence Category dams for the assessment of consequences (i.e. sunny day and flood dam-breaks for events up to the PMF). For Extreme and High Consequence Category dams having a serious deficiency in safety, NSW SES has agreed with DSC that the Local Flood Plan will contain specific arrangements for dealing with a dam failure usually in the form of a Dam Failure Annex. The following sections set out the findings of a preliminary investigation which was undertaken to assess the consequences a potential failure of the two existing dams at Crookwell (i.e. the Todkill Park Dam on Kiamma Creek and the Cullen Street Dam on the Cullen Street Overland Flow Path) would have on flooding behaviour. ### 2.11.2 Methods of Analysis A rigorous assessment of dam break would require a detailed survey of the impoundments to assess their height versus storage characteristics, as well as geotechnical investigations to determine the engineering characteristics of the embankment and would be an expensive exercise. After consideration, the FMC decided that a "scoping study" should in the first instance be undertaken to determine the likely magnitude of the problem in terms of the time of travel of the flood wave and the incremental rise above naturally occurring flood levels, before launching into more detailed studies. The stage hydrograph experienced as a result of dam failure would depend on a number of factors, including: - > The shape of the dam breach discharge hydrograph at the wall, which is dependent on the rate of erosion of the embankment (a function of the depth of overtopping, the materials used and their state of compaction); as well as the stage versus volume relationship in the impoundment. - > The hydraulic characteristics of the stream between the dam and the village; as well as the conveyance capacity and flood storage in the channel and floodplain. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 27 > Concurrent flooding in adjacent tributaries, that is, whether a Sunny Day failure occurs, or (as is more likely) a failure coincident with a major flood event such as occurred in December 2010. Table 2.4 shows the existing dam characteristics and dam break parameters adopted in this study. The existing dam characteristics (i.e. embankment and spillway levels and storage volumes) were derived from the LiDAR survey data used in the hydraulic model. The time to failure and ultimate breach geometry was determined using the Von Thun and Gillette (1990) relationships developed from a case study of 57 dam failures in the United States of America and documented in Wahl, 1998. TABLE 2.4 EXISTING DAM CHARACTERISTICS AND DAM BREAK PARAMETERS | Condition | Attribute | Todkill Park Dam | Cullen Street Dam | |---------------------------------------|---------------------------------------|-------------------|-------------------| | | Crest Elevation (m AHD) | 900.0 | 908.0 | | Present Day(1) | Spillway Elevation (m AHD) | 899.0 | 906.6 | | | Storage Volume at Spillway Level (m³) | 95,000 (or 95 ML) | 30,000 (or 30 ML) | | | Average Breach Width (m) | 15.1 | 13.7 | | Dambreak
Parameters ⁽²⁾ | Breach Formation Time (hrs) | 0.3 | 0.3 | | | Breach Side Slope (V:H) | 1:1 | 1:1 | - 1. Based on the LiDAR survey used to construct the hydraulic model. - 2. Derived from the Von Thun and Gillette (1990) method contained in Wahl, 1998. The worst case dam failure scenario was adopted for this scoping study. For this the following assumptions were made: - > the dam embankment fails in-line with the thalweg of the downstream watercourse; and - > failure occurs when the 100 year ARI peak water level in the dam is reached (i.e. at the peak water level under present day conditions). The TUFLOW hydraulic model developed for the FRMS was used to simulate the failure of the dam embankments based on the breach parameters in Table 2.4, and route the flood wave through the drainage system. ### 2.11.3 Results of Dam Break Analysis ### Todkili Park Dam The Todkill Park Dam is located on Kiamma Creek approximately 1.0 km upstream of Harley Road. The dam controls a catchment area of about 1700 ha and is used for recreational purposes. No details are available on the date or standard of construction of the earth embankment². The peak 100 year ARI flood level in the dam is RL 899.78 m AHD, which is only 0.22 m below the crest level of the dam wall. ² Design drawings provided by Council indicate the dam was constructed post-1987 Figure 2.37 shows the impact a potential failure of the dam embankment would have on flooding behavior downstream of its location. The peak 100 year ARI flow in Kiamma Creek immediately downstream of the dam will more than double from about 62 m³/s to about 147 m³/s. Peak 100 year ARI flood levels in Kiamma Creek would be increased by up to 500 mm, with greater increases shown to occur immediately upstream of Laggan Road. Peak 100 year ARI flood levels in the Crookwell River downstream of its confluence with Kiamma Creek would be increased by up to 300 mm. A failure of the Todkill Park Dam would result in the sudden increase in the depth of inundation in existing development that is located in the vicinity of Goulburn Street near its crossing of East Street, as well as in Railway Street, with three buildings (one residential and two commercial) subject to potentially life threatening flooding conditions.³ ### **Cullen Street Dam** The Cullen Street Dam is a privately owned structure that is located on the southern (upstream) side of Cullen Street on the Cullen Street Overland Flow Path. The dam is used to store runoff which is generated by a 106 ha catchment for irrigation purposes. No details are available on the date or standard of construction of the earth embankment. The peak 100 year ARI flood level in the dam is RL 907.25 m AHD, which is 0.75 m below the crest level of the dam wall. Due to its large size, the Cullen Street Dam attenuates flood flows discharging to the Cullen Street Overland Flow Path. For example, under pre-dam conditions, the peak 100 year ARI flow discharging across Cullen Street would have been about 8 m³/s, compared to the current flow rate of about 5 m³/s. Figure 2.39 shows the impact a potential failure of the dam embankment would have on flooding behavior downstream of its location. The peak flow in the Cullen Street Overland Flow Path immediately downstream of the dam would increase by an order of magnitude, from about 5 m³/s to about 60 m³/s. Peak 100 year ARI flood levels would increase by over 500 mm along the Cullen Street Overland Flow Path and by up to 300 mm in Kiamma Creek. The impacts would reduce downstream of Laggan Road, where peak 100 year ARI flood levels would be increased by up to 200 mm in the Crookwell River. A failure of the Cullen Street Dam would result in the sudden increase in the depth of inundation in existing development that is located in the vicinity of Goulburn Street near its crossing of East Street, with eight buildings (five residential and three commercial) subject to potentially life threatening flooding conditions⁴. ### 2.11.4 Dam Classification and Future Refinements to the Dam Break Analysis The results of the hydraulic modelling were used to determine the consequence category for the two dams based on the DSC's publication DSC3A, "Consequence Categories for Dams". Table 2.5 shows the key parameters that lead to both dams being assessed as having a Flood Consequence Category of High C. A High C classification would lead to the two dams becoming a "prescribed" dam under Schedule 1 of the Dams Safety Act 1978, whereby DSC can require owners to implement measures which are aimed at ensuring the safety of their dams. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 29 ³ Defined as being where high hazard conditions would arise or where the depth of above-floor inundation would be greater than 300 mm (depth criteria based on advice received from DSC). ⁴ Refer footnote 3 for definition of life threatening conditions. # TABLE 2.5 CONSEQUENCE CATEGORIES FOR EXISTING DAMS AT CROOKWELL | Category | Todkill Park Dam | Cullen Street Dam | |---|------------------|-------------------| | Population at Risk ⁽¹⁾ | 9 | 27 | | Probable Loss of Life ⁽²⁾ | 0.21 | 0,36 | | Flood Consequence Category ⁽³⁾ | High C | High C | - 1. Assumes that there are 3 occupants at risk in each building that is subject to hazardous flooding. - Using procedure for low
lethality conditions (less than 20% of flooded residences are either destroyed or heavity damages) in Graham, 1999. - 3. Based on Table 1 in DSC3A, assuming "Minor" damage. As this study is of a preliminary nature, further more detailed investigations will need to be undertaken in order to confirm the High C classification. This will require a bathymetric survey to be undertaken to define the storage characteristics of the two water bodies, as well as a floor level survey of properties located in the affected areas. A geotechnical investigation will also need to be undertaken in order to determine the engineering characteristics of the earth embankments. The TUFLOW model that was originally developed as part of the *Flood Studies* and later updated as part of the *FRMS* could then be used to simulate the progressive failure of the dam embankments. Once the detailed investigations have been completed, the DSC should be advised of the existence of the two dams by submission of a "D1 - Basin Data Form for Dams". The DSC will then determine whether the two dams are to be listed under Schedule 1 of the Dams Safety Act 1978. ### 2.12 Economic Impacts of Flooding The economic consequences of floods are discussed in Appendix B, which assesses flood damages to residential, commercial and industrial property and public buildings in the floodplain. There are no data available on historic flood damages to the urban sectors in the study area. Accordingly it was necessary to use data on damages experienced as a result of historic flooding in other urban centres. The residential flood damages were based on the publication *Floodplain Risk Management Guideline No. 4, 2007* (Guideline No. 4) published by the Department of Environment and Climate Change (DECCW) (now Office of Environment and Heritage (OEH)). Damages to industrial and commercial development, as well as public buildings were evaluated using data from previous floodplain management investigations in NSW. It is to be noted that the principal objectives of the damages assessment were to gauge the severity of urban flooding likely to be experienced at the four villages and also to provide data to allow the comparative economic benefits of various flood modification measures to be evaluated in **Chapter 3** of the report. As explained in **Appendix B**, it is not the intention to determine the depths of inundation or the damages accruing to *individual properties*, but rather to obtain a reasonable estimate of damages experienced over the extent of the urban area in each village for the various design flood events. The estimation of damages using *Guideline No. 4* (in lieu of site specific data determined by a loss adjustor) also allows a uniform approach to be adopted by Government when assessing the relative merits of measures competing for financial assistance in flood prone centres in NSW. Damages were estimated for the design flood levels determined from the hydraulic model set up for the *Flood Studies*. Elevations of the floors of affected properties were estimated by a "drive-by" survey which assessed the height of the floor above local natural surface elevations. These natural surface elevations were derived from the LiDAR survey used to construct the hydraulic model. The number of properties predicted to experience "above-floor" inundation, together with estimated flood damages are listed on Table 2.6 over the page. ### Crookwell At the 100 year ARI level of flooding, 103 residential properties would be flood affected (i.e. water has entered the allotment), fourteen of which would experience above-floor inundation of up to 300 mm depth in the event of a 100 year ARI flood. Seven commercial properties and two public buildings would experience above-floor inundation in the event of this magnitude. The total flood damages in the village would amount to \$1.91 Million in the event of a 100 year ARI flood. As shown in Figure 2.5, four of the residential and three of the commercial properties that are subject to above-floor inundation are located on the Goulburn Street crossing of the Cullen Street Overland Flow Path. Flooding in these properties occurs as a result of insufficient capacity in the culvert which crosses Goulburn Street. The remaining properties subject to above-floor inundation are located on the minor overland flow paths where localised depressions in the topography cause ponding to occur, or where there is concentrated overland flow through the allotment. ### **Gunning** At Gunning, 34 residential properties would be flood affected at the 100 year ARI, seven of which would experience above-floor inundation of up to 200 mm depth in the event of a 100 year ARI flood. Eight commercial properties and three public buildings would experience above-floor inundation in the event of this magnitude. In the event of a 100 year ARI flood, the total flood damages in the village would amount to \$0.82 Million. The majority of properties subject to above-floor inundation are located on the southern (upstream) side of Yass Street east of Warrataw Street. This area is impacted by floodwater which surcharges Meadow Creek upstream of Cullavin Street, as well as overland flow which either discharges through the Gunning Showground or crosses Yass Street from the west at the low point in the road. ### Collector At Collector, only one commercial property would experience above-floor inundation in the event of a 100 year ARI flood. The total flood damages in the village are therefore relatively minor, amounting to only \$0.07 Million for a flood of this magnitude. ### Taralga At Taralga, 14 residential properties would be flood affected, of which two would experience above-floor inundation of up to 200 mm depth in the event of a 100 year ARI flood. One commercial property and one public building would be flooded above floor level during a flood of the same magnitude. The total flood damages would also be relatively minor, amounting to only \$0.25 Million for a 100 year ARI event. # TABLE 2.8 FLOOD DAMAGES NOMINAL DESIGN FLOOD LEVELS(1) | | | | | Number of | Properties | | | | | | |-----------|---------|-------------------|----------------------------------|-------------------|----------------------------------|-------------------|----------------------------------|-----------------|------|------| | 3.Allono | ARI | Reside | ential | Comm | | Put | ilic | Total
Damage | | | | | (years) | Flood
Affected | Flood
Above
Floor
Level | Flood
Affected | Flood
Above
Floor
Level | Flood
Affected | Flood
Above
Floor
Level | (\$ Million) | | | | | 20 | 74 | 8 | 8 | 6 | 2 | 2 | 1.25 | | | | | 100 | 100 | 100 | 103 | 14 | 9 | 7 | 2 | 2 | 1.91 | | Crookwell | 200 | 108 | 16 | 6 10 | 8 | 2 | 2 | 2.07 | | | | | 500 | 119 | 19 | 10 | 9 | 2 | 2 | 2.41 | | | | | PMF | 279 | 132 | 22 | 22 | 4 | 4 | 15.03 | | | | | 20 | 20 | 1 | 5 | 1 | 2 | 1 | 0.25 | | | | Gunning | 100 | 100 34 | 34 | 7 | 11 | 8 | 5 | 3 | 0.82 | | | | 200 | 36 | 7 | 14 | 11 | 5 | 3 | 0.99 | | | | | 500 | 45 | 17 | 16 | 13 | 5 | 3 | 1.80 | | | | | PMF | 74 | 55 | 20 | 20 | 12 | 12 | 18.20 | | | | | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | | | | | 100 | 4 | 0 | 1 | 1 | 0 | 0 | 0.07 | | | | Collector | 200 | 6 | 2 | 1 | 1 | 0 | 0 | 0.17 | | | | | | 6 | 2 | 1 | 1 | 1 | 1 | 0.22 | | | | | PMF | 26 | 20 | 2 | 1 | 1 | 1 | 1.99 | | | | | 20 | 12 | 1 | 0 | 0 | 1 | 1 | 0.16 | | | | | 100 | 14 | 2 | 2 | 1 | 1 | 1 | 0.25 | | | | Taraiga | 200 | 14 | 3 | 2 | 1 | 1 | 1 | 0.28 | | | | | 500 | 15 | 3 | 3 | 1 | 1 | 1 | 0.36 | | | | | PMF | 50 | 15 | 11 | 5 | 2 | 1 | 1.40 | | | Nominal design flood levels computed by application of the flood levels derived from the TUFLOW model to property floor levels, without allowance for freeboard. ### 2.13 Flood Warning and Flood Preparedness The NSW SES is nominated as the principal combat and response agency for flood emergencies in NSW. NSW SES is responsible for the issuing of relevant warnings (in collaboration with BoM), as well as ensuring that the community is aware of the flood threat and how to mitigate its impact. The BoM operates a flood warning system which provides predictions of gauge heights at a number of towns in both the Lachlan and Hawkesbury Valleys, but does not provide specific warning information for the four villages as there are no flood gauges on the major watercourses which run through them. The Upper Lachlan Shire Local Flood Plan is only partially complete. For example, Volume 1 which covers the local emergency management responsibilities has been completed, while Volume 2 (which addresses flood hazard and the potential risk the community) and Volume 3 (which outlines the NSW SES response arrangements) are yet to be developed. The DFRMP therefore includes a recommendation that NSW SES complete Volumes 2 and 3 of the Local Flood Plan for the Upper Lachlan Shire using information contained in the Flood Studies and this report. The Upper Lachlan Shire is located within the Southern Highlands NSW SES Region. The future Upper Lachlan Local Flood Plan will be administered by the Crookwell Local Controller (Crookwell and Taralga) and the Collector Local Controller (Gunning and Collector). ### 2.14 Environmental Considerations The creek systems at the four villages are largely in their natural state where they run through public and privately owned land with limited easements. As there are a limited number of properties affected by main stream flooding in all four villages, modifications to the main arms of the creeks would not result in a significant reduction in flood damages. As a result, channel modifications do not form part of the recommended set of flood mitigation measures at each village. Chapter 3 of the report examines the potential benefits that could be achieved in terms of reduction in the impacts of flooding on existing development by clearing dense vegetation along the Crookwell River and Kiamma Creek at Crookwell and along Meadow
Creek at Gunning. As these are natural streams, management measures would include the removal of woody weeds and willows and the revegetation of the creek corridors with native species. These measures usually have a beneficial, but limited impact on the conveyance capacity of the stream. Chapter 3 of the report also investigates the potential for detention basins to be built in the upper reaches of the Cullen Street Overland Flow Path at Crookwell to mitigate downstream flooding patterns in existing development. While construction of the basins would require land clearing and major earthworks, controls over erosion sediment transport during the construction phase would mitigate adverse environmental impacts. ### 3 POTENTIAL FLOODPLAIN MANAGEMENT MEASURES ### 3.1 Range of Available Measures A variety of floodplain management measures can be implemented to reduce flood damages. They may be divided into three categories, as follows: Flood modification measures change the behaviour of floods in regard to discharges and water surface levels to reduce flood risk. This can be done by the construction of levees, detention basins, channel improvements and upgrades of piped drainage systems in urban areas. Such measures are also known as "structural" options as they involve the construction of engineering works. Property modification measures reduce risk to properties through appropriate land use zoning, specifying minimum floor levels for new developments, voluntary purchase of residential property in high hazard areas, or raising existing residences in the less hazardous areas. Such options are largely planning (i.e. "non-structural") measures, as they are aimed at ensuring that the use of floodplains and the design of buildings are consistent with flood risk. Property modification measures could comprise a mix of structural and non-structural methods of damage minimisation to individual properties. **Response modification** measures change the response of flood affected communities to the flood risk by increasing flood awareness, implementation of flood warning and broadcast systems and the development of emergency response plans for property evacuation. These options are entirely non-structural. ### 3.2 Community Views Comments on potential flood management measures were sought from the Upper Lachlan community by way of the Community Questionnaire distributed at the commencement of the study. The responses are summarised in Appendix A of this FRMS report. Question 9 in the Questionnaire outlined a range of potential flood management options. The responses are shown on Table 3.1 over the page together with initial comments on the feasibility of the measures. The measures are discussed in more detail in later sections of this Chapter and in Appendix C. The Community favoured the following measures: - Management of vegetation and sedimentation in the creek systems to maximise the hydraulic capacity of the creek channels and minimise the likelihood of blockages due to flood debris at the local road crossings. - > Enlarging the creek channels to increase hydraulic capacity. - > Improvements in the trunk drainage system in the urban parts of the villages. - > Flood related controls over future development in flood liable areas. - Improved flood warning, evacuation and flood response procedures. - Community education to promote flood awareness. - > Advice of flood affectation via Planning Certificates for properties located within the Flood Planning Area. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 34 FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 FM = Flood Modification Option PM = Property Modification Option RM = Response Modification Option # COMMUNITY VIEWS ON POTENTIAL FLOOD MANAGEMENT NEASURES ### ₹ e 3 ਤ 9 9 Notation of flood affectation Planning Certificates. Voluntary purchase of residential property in high hazard areas Construct Community education, awareness programs. Controls over future development in flood-lieble areas. (e.g. controls on location in the floodplain, minimum floor levels, etc.). Maintenance programs to clear creeks of vegetation and debris impeding lows at road crossings. procedures. improve flood warning Construct detention basins to store floodwaters. Enlarge the creek channels te funding or subsidies to reise Flood Management Measure ₹ permanent capacity 양하 participation **89999** BS d of properties 2 6 evacuation 9 hazard dreinage contain 000 Classification(1) ₽ 찙 R ₽ ₹ 7 ₹ Ŧ ₽ Ŧ -Crookwell = 5 ಸ 243 귥 13 ¥98 ٥ _ 0 0 6 * (C) O. Ų 4 _ ¥85 Q0 ø ~ N * 4 100 Gunning . O 00 풁 0 _ _ _ ψs ću (ur 0 N No. of Respondents 188. Collector 6 N3 60 8 . 5 . 4.75 13 N Š N e) š -Taraiga ch -4 0 Ø1 0 ы Øı 3 . 0 -_ -٠ em _ 03 ٠ _ 딸 27 28 A.2 * 73 100 8 # 19 35 ço . . ž 8 7 7 # Ų, Provision of information on flood affection of properties is strongly fevoured by the community. This may be achieved by not atton of flood affectation of allotments on Section 149 Planning Certificates. This option is reviewed in Section 3.5.1. This measure is strongly supported by the community and needs to be considered as part of the DFRMP. The Flood Studies show that flooding caused by surcharge of the trunk drainage systems is relatively minor at the four villages, with the exception of the Goutburn Street crossing of the Cullen Street Overland Flow Path. The technical requirements associated with hydraulic structure upgrades are discussed. Promotion of awareness of the flood risk would be very strongly fevoured among the community. This option is reviewed in Section 3.6.3. occurrences in the four villages, there is presently no formal Local Flood Plan for the Upper Lachian Shire. Improvements to food emergency response planning (using information contained in this study, as well as the *Flood Studies*) are supported by the community and The community is strongly in support of this option, which is an essential part of the FRMP. The issue is covered in the *Graft Flood Policy* referenced in Senters 3.6.1 and presented in Appendix D. the overland flow paths and is reviewed in Saction 3.5.3. The results of the Flood Studies show that it has no application in the four villages due to the ability of the creek and/or floodplain to convey Crookwell. Collector or Taraga due to the ability of the creek and/or floodplain to convey major flows without encreaching on existing development. This option may be applicable at Gurning where Meadow Creek breaks its bank in the vicinity of Cullevin Street and impacts in Section C2.4 of Appendix C. Whilst the community is not in favour of this option, the Flood Studies show that construction of a detantion basins on the Cullen Street. The Overland Flow Path at Crockwell will reduce depths of mundation in existing development located in the vicinity of Goulburn Street. The This option is generally fevoured by the community. The results from the *Ficod Studies* show that it has illife application at Taralga due to the incised nature of the creek or for Crookwell. Gurning and Collector where the majority of the flow is conveyed on the overbank srees of the creek. The technical requirements associated with channel improvements are discussed in **Section C2.2** of **Appendix C**. This option is strongly favoured by the community and would have an application along the main streams at Crookwell and Gurning. It is aimed at ensuring that the existing drainage system functions at maximum capacity during floods. The technical requirements associated with stream cleaning are discussed in Section C2.1 of Appendix C. are considered in Section 3.5 The community is not in favour of this option. This option would have application for timber framed houses located in low hezerd zones on the shallow and slow moving nature of flow. However, for completeness, this option is reviewed in Section 3.5.2. major flows without encreaching on existing development. Similarly, low hazerd conditions generally apply in the overland flow paths due to Flooding is of a "lash flooding" nature, with sudden rises in water levels after the onset of heavy rainfall. While NSW SES responds to flood The community is not in fevour of this option, which is often adopted to remove residential property in high hexard areas of the floodplain existing development. The technical requirements associated with flood protection levess are discussed in Saction C2.6 of Appandix C. The community is not in favour of this option. In any case, the results of the Flood Studies show that it has no practical application technical requirements associated with detention basins are discussed in Section C2.3 of Appendix C Comment 808 30 Lyali & Associates The Villages of Crookwell, Gunning, Collector and Taraiga Floodplain Risk Management Study and Draft Plan ### 3.3 Outline of Chapter The measures set out in Table 3.1 were examined at the strategic level of detail in Chapter 3 and where appropriate, tested for feasibility on a range of assessment criteria in Chapter 4. Following consideration of the results by the FMC, selected measures were included in the DFRMP in Chapter 5. Table 3.9 at the end of this chapter summarises the potential floodplain management measures which are discussed in this Chapter. The potential flood modification measures include stream clearing, channel improvements, detention basins, levees and upgrades of the trunk drainage system, which may include improvements to both the channel and/or piped drainage systems. These structural measures have been modelled using the TUFLOW models developed for the Flood Studies to assess their impact on flooding patterns. Indicative cost estimates were prepared and an economic (benefit/cost) analysis undertaken to determine if the scheme could be justified on economic grounds. In the economic analysis, the damages prevented by a flood mitigation scheme represent its benefits. The damages were computed for present day and post-scheme conditions for a range of flood events from 20
year ARI up to the PMF. By integrating the area beneath the damages – frequency curve up to the "design standard" of the particular flood modification scheme (e.g. the 100 year ARI), the long term "average annual" value of benefits were calculated (by subtraction of post-scheme from present day damages). These average annual benefits were then converted to an equivalent present worth value for each of the three discount rates nominated by NSW Treasury Guidelines for the economic analysis of public works (i.e. 4, 7 and 10 per cent), over an economic life of 20 years. These present worth values of benefits were then divided by the capital costs of the schemes to give benefit/cost ratios for the three discount rates. The property modification measures considered as part of this study include controls over future development, voluntary purchase of residential properties and house raising. Response modification measures such as the implementation of flood warning and broadcast systems, improvements to emergency planning and responses and public awareness programs have been considered for all four villages. The need for a Dam Safety Emergency Plan (DSEP) for the two large dams at Crookwell is also discussed in this Chapter. ### 3.4 Flood Modification Measures Table 3.2 over summarises the potential flood modification measures which were assessed as part of the *FRMS*, while **Appendix C** presents the findings of an investigation which was undertaken into the merits of each potential measure. EVERMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Pegs 37 | | | TO IEM INC. TOOK WORLD'S INDIVIDUAL WEARINGS | | | |--------------------|---|---|---|--| | Flood Modification | Crookwell | Gunwing | Collector | Taraiga | | | - Crookwell River and Klamma Creek Stream Clearing Option - Meadow Creek Stream Clearing Option - The effects of removing danse vegetation and willow trees along the reach of Klamma Creek between Lends Street and | Meadow Creek Stream Clearing Option — The effects
of removing dense vegetation and willow trees along the
reach of Meadow Creek between Larids Street and | • Meadow Creek Stream Clearing Option — The effects of Stream clearing was not essessed as part of the present of removing dense vegetation and willow trees along the investigation as there is limited dense vegetation on the investigation as flow is generally contained within the integration of Meadow Creek between Lerida Street and therefore does not | Stream cleaning was not essessed as part of the present
investigation as flow is generally contained within the in-
bank area of Corroboree Creek and therefore does not | | Stream Clearing | between Leggen Road and the projection of Kensit Street on tooding behaviour was assessed. Refer Section C3.2 of | Refer Section C4.2 of Appendix C for further details. | | | | a detention basin north of existing development on Creat Street were assessed. Refer Section C3.4.5 of Appendix C for further detail. | Culien Street Detention Basin - The benefits of converting the abising farm dan which is located on the upplream side Culien Street Overland Flow Path to a formal stood detention basin were assessed. Refer Section Cal.4.2 of Appendix C for further details. Garinge Road Detention Basin - The benefits of constructing a new detention basin upsineem of Grange Road on a Iribulary arm of the Culien Street Overland Flow Path were assessed. Refer Section Cal.4.3 of Appendix C for further details. Basins Callen Street and Grange Road Detention Basine - The benefits of constructing the two absencement of the existing culvert under Goulburn Street on the Culien Street Overland Flow Path were assessed. Refer Section CA.4.3 of Appendix C for details. Basins | Goulburn Street Local Drainage Upgrade - Section C3.1 of Appendix C for details on upgrading the stommeter drainage system to remove nuisance flood existing commercial development on Goulburn Street. King Road Local Drainage Upgrade - The benef upgrading the local drainage system along King Road assessed. Relar Section C3.3 of Appendix C for details Goulburn Street Trunk Drainage Upgrade - Seven dreinage upgrade attematives were assessed for the 4 Street Overland Flow Path in the vicinity of Goulburn Refer Section C3.3.3 of Appendix C for details. | No locations were identified who Chennel teasible option to reduce the Improvements development from. | Crookwell River and Klamma Creek Stream Clearing Option The effects of removing dense vegetation and willow treat along the reach of Klamma Creek between Hartey Road and Saleyards Road and along the reach of the Crookwell River batween Leggan Road and the projection of Kensti Street on Roading behaviour was assessed. Refer Section C3.2 of Appendix C for further details. | Меавиге | |---|--|---|--
--|-----------| | No locations were identified where the construction of a levee was a feasible option to protect existing development from the | Culien Street Detention Basin – The benefits of converting the stating farm dam which is located on the upstream side of culien Street on the Calaboration Desin were assessed. Refer Section C3.4.2 of Appendix C for further details. Grange Road Detention Basin – The benefits of constructing a new detention basin upstream of Grange Road on a iribulary arm of the Culien Street of Cyentand Flow Path were assessed. Refer Section C3.4.3 of Appendix C for further details. Culien Street and Grange Road Detention Basins – The benefits of constructing the two storementioned details of upstreet and the culien Street Overland Flow Path were assessed. Refer Section C3.4.3 of Appendix C for details. Saleyards Road Detention Basin – The benefits of constructing a detention basin north of existing development on Cram Street were assessed. Refer Section C3.4.5 of Appendix C for further detail. | Gaulburn Street Local Drainage Upgrade - Refer Section C3.3.1 of Appendix C for details on upgrading the local stomwater drainage system to remove nutsance stooding in existing commercial development on Goulburn Street. King Road Local Drainage Upgrade - The benefits of upgrading the local drainage system along King Road were assessed. Refer Section C3.3.2 of Appendix C for details. Goulburn Street Trunk Drainage Upgrade - Seven frunk drainage upgrade attematives were assessed for the Culten Street Overland Flow Path in the vicinity of Goulburn Street. | No locations were identified where channel improvements are a teasible option to reduce the impact of flooding on existing development from. | Crookwell River and Klansma Creek Stream Clearing Option - The effects of removing dense vegetation and willow trees shong the reach of Klansma Creek between Harby Road and Saleyerds Road and slong the reach of the Crookwell River barkvesn Leggan Road and the projection of Kansit Street on flooding behaviour was assessed. Refer Section C3.3 of Appendix C for further details. | Crookwell | | Cullevin Street Levse – The benefits of constructing a
levse stong the left bank of Mesdow Creek between the
Jack Shaw Bridge (Yeas Street) and higher ground | No locations were identified where construction of a
flood detention basin reduce the impact of flooding on
existing development. | Blain Street Local Drainage Upgrade — The benefits of
a local drainage upgrade aimed at removing overland
flow through existing development between Blaia Street
and Yess Street were essessed. Refer Section CA.4 of
Appendix C for defails. Main Southern Railway Upgrade — The benefits of
replacing the existing brick arch shucture with a 200 m
long bridge were assessed. Refer Section C4.5 of
Appendix C for defails. | Meadow Creek Channel Works — The benefits of
removing the Barbour Park Wair were assessed. Refer
Section C4.3 of Appendix C for details. | Meadow Creek Stream Clearing Option — The effects of removing dense vegetation and willow trees along the reach of Meadow Creek between Lerdias Street and Cullevin Street on flooding behaviour were essessed. Refer Section C4.2 of Appendix C for further details. | Gunwing | | No locations were identified where the construction of a
levee would protect existing development flooding. | No locations were identified where construction of a
flood detantion basin reduce the impact of flooding on
existing development. | ■ George Street Trunk Crainage Upgrade — The benefits of upprading the trunk drainage line between the Federal Highway and the Collector Creek floodpien were esseased. Refer Section C.5.2 of Appendix C for details. ■ Collector Bypasa Channet — The benefits of constructing a channel running perallel to the Federal Highway to divert flows around existing development were assessed in Section C.5.3 of Appendix C for details. | No locations were identified where channel
improvements are a feasible option to reduce the impact
of flooding on existing development from. | Stream cleaning was not assessed as part of the present
investigation as there is limited dense vegetation on the
floodplain, removal of which would have a negligible
effect on peak flood levals. | Collector | | No locations were identified where the construction of a
leves would protect existing development flooding. | No locations were identified where construction of a
flood detertion basin reduce the impact of flooding on
existing development. | Orchard Street Local Drainage Upgrade — The benefits of upgrading the local drainage line downstream of Orchard Street were assessed. Refer Section C6.2 of Appendix C for details. | No locations were identified where channel
improvements are a feasible option to reduce the impact
of flooding on existing development from. | Streem cleaning was not essessed as part of the present
investigation as flow is generally contained within the in-
bank area of Corrobores Creak and therefore does not
effect existing development. | Taraiga | Lyall & Associates The Villages of Crockwell, Gunning, Collector and Taraba Floodplain Risk Management Study and Draft Plan ### 3.5 Property Modification Measures ### 3.5.1 Controls over Future Development ### 3.5.1.1 Considerations for Setting Flood Planning Level Selection of the FPL for an area is an important and fundamental decision as the standard is the reference point for the preparation of floodplain management plans. It is based on adoption of the peak level reached by a particular flood plus an appropriate allowance for freeboard. It involves balancing social, economic and ecological considerations against the consequences of flooding, with a view to minimising the potential for property damage and the risk to life and limb. If the adopted FPL is too low, new development in areas outside the FPA (particularly where the difference in level is not great) may be inundated relatively frequently and damage to associated public services will be greater. Alternatively, adoption of an excessively high FPL will subject land that is rarely flooded to unwarranted controls. Councils are responsible for determining the appropriate FPL's within their local government area. The *Upper Lachlan LEP 2010* nominates the 100 year ARI plus 500 mm freeboard as the FPL. However, the LEP does not presently distinguish between the three flood producing mechanisms at the four villages; namely Main Stream flooding from the major tributaries, Minor Tributary flooding from the smaller incised watercourses which principally drain the rural areas bordering the villages and the slow moving and shallow overland flow from the local catchments draining the urban parts of the villages. ### 3.5.1.2 Current Government Policy The circular issued by the Department of Planning on 31 January 2007 contained a package of changes clarifying flood related development controls to be applied on land in low flood risk areas (land above the 100 year ARI flood). The package included an amendment to the Environmental Planning and Assessment Regulation 2000 in relation to the questions about flooding to be answered in Section 149 planning certificates, a revised ministerial direction (Direction 15 – now Direction 4.3 issued of 1 July 2009) regarding flood prone land (issued under Section 117 of the EP&A Act, 1979) and a new Guideline concerning flood-related development controls in low flood risk areas. The Circular advised that Councils will need to follow both NSWG, 2005, as well as the Guideline to gain the legal protection given by Section 733 of the Local Government Act. The Department of Planning Guideline confirmed that unless exceptional circumstances applied, councils should adopt the 100 year ARI flood with appropriate freeboard as the FPL for residential development. In proposing a case for exceptional circumstances, a Council would need to demonstrate that a different FPL was required for the management of residential development due to local flood behaviour, flood history, associated flood hazards or a particular historic flood. Unless there were exceptional circumstances, Council should not impose flood-related development controls on residential development on land with a low probability of flooding, that is land above the residential FPL. Nevertheless, the safety of people and associated emergency response management needs to be considered in low flood risk areas, which may result in: Restrictions on types of development which are particularly vulnerable to emergency response, for example, developments for aged care and schools. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 38 Pastrictions on critical emergency response and recovery facilities and infrastructure. These aim to ensure that these facilities and the infrastructure can fulfil their emergency response and recovery functions during and after a flood event. Examples include evacuation centres and routes, hospitals and major utility facilities. There are currently no critical developments of this nature in the floodplain. ### 3.5.1.3 Proposed Planning Controls for the Four Villages Proposed planning controls for flood prone
areas in Crookwell, Gunning, Collector and Taralga, along with a draft *Flood Policy* for future development in those areas, are presented in **Appendix D**. They are based on the proposed sub division of the floodplain and amendments to the *Upper Lachlan LEP 2010* introduced in **Section 2.6** of the report. Appendix D deals with the preparation of flood mapping to separately identify land subject to MSMTF, as well as areas subject to the shallower and slower moving flow associated with MOF. The need for the sub division of flood prone land into these three categories arises from recently developed practice which aims at minimising community concerns when land subject to relatively shallow slow moving overland flow (with the addition of the traditional 500 mm of freeboard) is subject to flood-related development controls and attracts a flood affection notice on Planning Certificates issued under Section 149 of the EP&A Act 1979. Considerable reduction in the number of properties in MOF areas classified as "flood affected" would result by the adoption of a threshold depth of inundation under 100 year ARI conditions of 150 mm as the criterion for flood affectation, compared with the traditional approach. Properties with depths of inundation 150 mm or greater, or in a floodway (i.e. traversed by significant overland flows) would be considered to be flood affected and lie within the FPA. Properties with depths of inundation under 100 year ARI conditions of less than 150 mm would be classified as "Local Drainage" and, as such would be subject to controls such as the Building Code of Australia (BCA) requirements, rather than attracting a flood affectation notice. This approach is supported by NSWG, 2005 and would not adversely impact on Council's duty of care in regard to management of flood prone lands. The proposed categorisation of the floodplain, terminology and controls are shown on Table 3.3 over the page. Extracts from the Flood Planning Map supporting this approach are shown on Figure D1.1, D1.2, D1.3 and D1.4 of the draft Flood Policy (refer Appendix D). NSWG, 2005 suggests wording on S149 (2) Planning Certificates along the following lines: "Council considers the land in question to be within the Flood Planning Area and therefore subject to flood related development controls. Information relating to this flood risk may be obtained from Council. Restrictions on development in relation to flooding apply to this land as set out in Council's Flood Policy which is available for inspection at Council offices or website." # TABLE 3.3 PROPOSED CATEGORISATION OF THE FLOODPLAIN | Category (FDM, 2005) | Proposed Terminology used to define inundation in FRMS&DP report | Are Development
Controls Required? | Is Section 149 Notification Warranted? | |---|--|---|--| | Maria Olivania Wilaydia | "Main Stream Flooding" | Yes | Yes | | Main Stream Flooding | "Minor Tributary Flooding" | Yes | Yes | | Local Overland Flooding - Local Drainage - Major Drainage | "Local Drainage" "Major Overland Flow" | No (ref. footnote 1).
Yes (ref. footnote 2). | No (ref footnote 1)
Yes (ref footnote 3 | ### Footnotes - Inundation in Local Drainage areas is accommodated by the minimum floor level requirement of 150 mm above finished surface level contained in the BCA and does not warrant a flood affectation notice in S149 Planning Certificates. - These are the deeper flooded areas with higher flow velocities. Development controls are specified in the draft Flood Policy of Appendix D. - Depth and velocity of inundation in Major Overland Flow areas are sufficient to warrant flood affectation notice in S149 Planning Certificates. Inundation is classified as "flooding". ### 3.5.1.4 Revision of LEP 2010 by Council To implement the recommended approach set out in the *FRMS&DP*, clause 6.1 of *Upper Lachlan LEP* 2010 would require minor amendments, namely in regards the wording of sub clause (5). It is recommended that the following clause replaces the existing clause 6.1 of *Upper Lachlan LEP* 2010: ### 6.6 Flood planning - (1) The objectives of this clause are as follows: - (a) to minimise the flood risk to life and property associated with the use of land. - (b) to allow development on land that is compatible with the land's flood hazard, taking into account projected changes as a result of climate change. - (c) to avoid significant adverse impacts on flood behaviour and the environment. - (2) This clause applies to: - (a) land identified as "flood planning area" on the Flood Planning Map; and - (b) other land at or below the flood planning level. - (3) Development consent must not be granted for development on land to which this clause applies unless the consent authority is satisfied that the development: FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 40 - (a) is compatible with the flood hazard of the land, and - (b) will not significantly adversely affect flood behaviour resulting in detrimental increases in the potential flood affectation of other development or properties, and - (c) incorporates appropriate measures to manage risk to life from flood, and - (d) will not significantly adversely affect the environment or cause avoidable erosion, siltation, destruction of riparian vegetation or a reduction in the stability of river banks or watercourses, and - (e) is not likely to result in unsustainable social and economic costs to the community as a consequence of flooding. - (4) A word or expression used in this clause has the same meaning as it has in the NSW Government's Floodplain Development Manual published in 2005, unless it is otherwise defined either in this clause or elsewhere in this plan. - (5) In this clause: For land not defined as either Outer Floodplain or Flood Planning Area on the Flood Planning Map, the flood planning level is the level of the 100 year Average Recurrence Interval (ARI) flood event plus 500 mm freeboard. Note that reference to the *Flood Planning Map* forming part of Upper Lachlan LEP 2010 has been removed from sub-clause 5 as this will allow it to be updated without the need for the LEP to be updated at the same time. It is also recommended that a new floodplain risk management clause be added to *Upper Lachlan LEP* 2010 as follows: ### Floodplain risk management - (1) The objectives of this clause are as follows: - in relation to development with particular evacuation or emergency response issues, to enable evacuation of land subject to flooding in events exceeding the flood planning level, - (b) to protect the operational capacity of emergency response facilities and critical infrastructure during extreme flood events. - (2) This clause applies to: - (a) land identified as either *Intermediate Floodplain* or *Outer Floodplain*. - (3) Development consent must not be granted to development for the following purposes on land to which this clause applies unless the consent authority is satisfied that the development will not, in flood events exceeding the flood planning level, affect the safe occupation of, and evacuation from, the land: FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 41 - (a) amusement centre - (b) camping ground - (c) caravan park - (d) child care centre - (e) commercial premises (including business premises and retail premises) - (f) community facility - (g) correctional centre - (h) eco-tourist facility - (i) educational establishment (including schools and tertiary institutions) - (j) emergency services facility - (k) entertainment facility - (I) extractive industry - (m) function centre - (n) health services facility - (o) industry - (p) mining - (q) place of public worship - (r) residential accommodation (including seniors housing) - (s) respite day care centre - (t) tourist and visitor accommodation - (u) waste or resource management facility - (4) A word or expression used in this clause has the same meaning as it has in the NSW Government's Floodplain Development Manual published in 2005, unless it is otherwise defined either in this clause or elsewhere in this plan. - (5) In this clause: The Outer Floodplain is land which lies between the Flood Planning Area and the Probable Maximum Flood. The steps involved in Council's amending LEP 2010 following the finalisation and adoption of the FRMS&DP are: 1. Council Planning Staff consider the conclusions of the FRMS&DP and suggested amendments to Upper Lachlan LEP 2010. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 - 2. Council resolves to amend Upper Lachlan LEP 2010 in accordance with the FRMS&DP. - Council prepares a Planning Proposal in accordance with NSW Planning and Environment Guidelines. Planning Proposal submitted to NSW Planning and Environment in accordance with section 55 of the EP&A Act, 1979. - 4. Planning Proposal considered by NSW Planning and Environment and determination made in accordance with section 56(2) of the EP&A Act, 1979 as follows: - (a) whether the matter should proceed (with or without variation), - (b) whether the matter should be resubmitted for any reason (including for further studies or other information, or for the revision of the planning proposal), - (c) community consultation required before consideration is given to the making of the proposed instrument (the community consultation requirements), - (d) any consultation required with State or Commonwealth public authorities that will or may be adversely affected by the proposed instrument, - (e) whether a public hearing is to be held into the matter by the Planning Assessment Commission or other specified person or body, - (f) the times within which the various stages of the procedure for the making of the proposed instrument are to be completed. - 5. Planning Proposal exhibited for public comment. - 6.
Planning Proposal reviewed following public submissions and submissions from relevant State and Commonwealth authorities. - 7. Final Local Environmental Plan with proposed amendments drafted. - 8. Amending Local Environmental Plan made by the Minister and gazetted. ### 3.5.2 Voluntary Purchase of Residential Properties Removal of housing from high hazard floodway areas in the floodplain is generally accepted as a cost effective means of correcting previous decisions to build in such areas. The Voluntary Purchase (VP) of residential property in hazardous areas has been part of subsidised floodplain management programs in NSW for over 20 years. After purchase, land is subsequently cleared and the site re-developed and re-zoned for public open space or some other flood compatible use. A further criterion applied by State Government agencies in assessing eligibility for funding is that the property must be in a high hazard area such as a floodway, that is, in the path of flowing floodwaters where the depth and velocity at the peak of the flood are such that life could be threatened, damage of property is likely and evacuation difficult. Under a VP scheme the owner is notified that the body controlling the scheme, Council in the present case, is prepared to purchase the property when the owner is ready to sell. There is no compulsion whatsoever to sell at any time. The price is determined by independent valuers and the Valuer General, and by negotiation between Council and the owners. Valuations are not reduced due to the flood affected nature of the site. Hydraulic calculations described in **Chapter 2** showed that strictly speaking, none of the residences flooded in the four villages are located in the high hazard portion of the floodway. Flow velocities are low and the principal impact of flooding would be a relatively short duration of shallow, above-floor inundation in affected properties. FVFRMS_V1_Report_{Rev 1.2].doc November 2016 Rev. 1.2 Page 43 Given the nature of the flood risk, implementation of a VP scheme is less justified than at other flood prone centres where more hazardous conditions may occur. In addition, the Upper Lachlan community were not supportive in their response to the suitability of this measure, preferring the alternative approach of implementing flood and response modification measures. However, for completeness a scheme was assessed where all properties in the floodway subject to depths of above-floor inundation greater than 100 mm at the 100 year ARI. Table 3.4 shows the number of properties included in the analysis and the maximum depth of above-floor inundation for each village. Note that there are no residential properties inundated above-floor level by more than 100 mm in Gunning, Collector or Taralga. TABLE 3.4 VOLUNTARY PURCHASE SCHEME FOR RESIDENCES SUBJECT TO ABOVE-FLOOR INUNDATION GREATER THAN 100 mm | Location | No. of
Residences in
Sample | Max Depth of
Inundation
(mm) | |-----------|-----------------------------------|------------------------------------| | Crookwell | 8 | 300 | | Gunning | 0 | <100 | | Collector | D | | | Taraiga | 0 | <100 | An economic analysis was carried out on a VP scheme which would involve the purchase of the six properties in Crookwell that would experience depth of above-floor inundation greater than 100 mm in a 100 year ARI event. An average purchase price of \$350,000 per property was adopted. Table 3.5 over the page shows the results of the economic analysis which was carried out for the three discount rates nominated by NSW Treasury Guidelines for the economic analysis of public works. The benefits of the scheme comprise the *present worth value* of the flood damages to the properties which would be saved by their purchase. It is clear from the data shown in **Table 3.5** that a VP scheme would not be justified on economic grounds. VP schemes do not necessarily have to be economically feasible, as their main purpose is to remove unwise residential development in high hazard zones of the floodplain. However, although the urban floodplains are subject to "flash flooding" with little warning time, flooding is relatively shallow, of short duration and there is ready access to higher ground. Accordingly, it is considered that a VP scheme would not be justified on social grounds. # TABLE 3.5 ECONOMIC ANALYSIS - VOLUNTARY PURCHASE SCHEME FOR RESIDENCES SUBJECT TO ABOVE-FLOOR INUNDATION GREATER THAN 100 mm | Village | Discount Rate % | 4 | 7 | 10 | |-----------|---|------|------|------| | | Present Worth Value of Benefits
(Damages Prevented) \$ Million | 0.73 | 0.57 | 0.46 | | Crockwell | Cost of scheme \$ Million | 2.10 | 2.10 | 2.10 | | | Benefit/Cost Ratio | 0.35 | 0.27 | 0.22 | ### 3.5.3 Raising Floor Levels of Residential Properties The term "house raising" refers to procedures undertaken, usually on a property by property basis, to protect structures from damage by floodwaters. The most common process is to raise the affected house by a convenient amount so that the floor level is at or above the MFL. For weatherboard and similar buildings this can be achieved by jacking up the house, constructing new supports, stairways and balconies and reconnecting services. Alternatively, where the house contains high ceilings, floor levels can be raised within rooms without actually raising the house. It is usually not practical to raise brick or masonry houses. Most of the costs associated with this measure relate to the disconnection and reconnection of services. Accordingly, houses may be raised a considerable elevation without incurring large incremental costs. State and Federal Governments have agreed that flood mitigation funds will be available for house raising, subject to the same economic evaluation and subsidy arrangements that apply to other structural and non-structural flood mitigation measures. In accepting schemes for eligibility, the Government has laid down the following conditions: - > House raising should be part of the adopted FRMP. - > The scheme should be administered by the local authority. The Government also requires that councils carry out ongoing monitoring in areas where subsidised voluntary house raising has occurred to ensure that redevelopment does not occur to re-establish habitable areas below the design floor level. In addition, it is expected that Councils will provide documentation during the conveyancing process so that subsequent owners are made aware of restrictions on development below the design floor level. Council's principal role in subsidised voluntary house raising would be to: - Define a habitable floor level, which it will have already done in exercising controls over new house building in the area. - Guarantee a payment to the builder after satisfactory completion of the agreed work. - Monitor the area of voluntary house raising to ensure that redevelopment does not occur to re-establish habitable areas below the design floor level. The current cost to raise a medium sized (150 m^2) house is about \$100,000 based on recent experience in other centres. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 45 Table 3.6 is an economic analysis of a house raising strategy for the three discount rates at the four villages. Only two buildings (one each in Crookwell and Gunning) are timber framed and could be considered for house raising. The benefits of the scheme comprise the *present worth value* of the flood damages for the residential properties which would be saved by their raising. If the houses were raised to at least the 100 year ARI flood level plus freeboard then the scheme's benefits would comprise the damages up to that flood. TABLE 3.6 ECONOMIC ANALYSIS – RAISING FLOORS OF TWO TIMBER FRAMED RESIDENCES TO 100 YEAR LEVEL PLUS FREEBOARD | Village | Discount Rate % | 4 | 7 | 10 | |-----------|--|------|------|------| | | Present Worth Value of Benefits (Damages Prevented) \$ Million | 0.05 | 0.04 | 0.03 | | Crookwell | Cost of scheme \$ Million | 0.10 | 0.10 | 0.10 | | | Benefit/Cost Ratio | 0.50 | 0.40 | 0.30 | | | Present Worth Value of Benefits (Damages Prevented) \$ Million | 0.02 | 0.01 | 0.01 | | Gunning | Cost of scheme \$ Million | 0.10 | 0.10 | 0.10 | | | Benefit/Cost Ratio | 0.20 | 0.10 | 0.10 | This strategy is not economically feasible and was not favoured by the community in the responses to the Questionnaire. As mentioned, there is ready access to high ground for all of these properties. Accordingly, a scheme for raising flood prone houses has not been considered further. ### 3.6 Response Modification Measures ### 3.6.1 Improvements to Flood Warning System ### 3.6.1.1 General Improvements to the flood warning and response procedures were strongly favoured by the community during the community consultation process. An effective flood warning system has three key components, i.e. a flood forecasting system, a flood warning broadcast system and a response/evacuation plan. All systems need to be underpinned by an appropriate public flood awareness program. Funding to establish local flash flood warning systems has traditionally been made available on the basis of no Council contribution to the initial capital cost in recognition of the high maintenance costs which Council would have to meet. The costs of maintaining the system would include such items as rain and river gauges, warning communication systems and ongoing public awareness/education programs. The maintenance obligations need to be identified and included in any initial funding grant. An operation and maintenance manual would need to be prepared for the system. Reference to the system would also need to be incorporated into the NSW SES Local Flood Plan (the development of which is recommended in the FRMP). FVFRMS_V1_Report_{Rev 1.2].doc November 2016 Rev. 1.2 Page 46 ###
3.6.1.2 Recorded Rainfall and Stream Gauges BoM's flood warning system for the Lachlan Valley uses rainfall and stream flow data recorded at gauges in the catchment to provide quantitative predictions of river heights at towns along the river, with Cowra being the most upstream location. Together with rainfall data from other stations in the Lachlan Valley, the system uses rainfall data recorded at the Dalton, Golspie and Taralga rain gauges which are located within the Upper Lachlan Shire LGA. Historically, warning to NSW SES regarding approaching storms or flood producing rainfall is limited to the BoM's regional severe weather alerts and valley wide flood watches. In addition to the existing BoM operated rainfall gauge located 4 km east of Taraiga, new rainfall gauges could be established at Crookwell, Gunning and Collector. Recorded rainfall at these gauges could be used to provide NSW SES with valuable information regarding the onset and intensity of heavy rainfall, and could be linked to data gathered during previous historic events to predict the expected extent of flooding. However, the use of real time telemetered flow and rainfall data in a flood warning system would be constrained by the short travel time of the floodwave in the catchments, which ranges from two hours at Taraiga to six hours at Collector. There would be no benefit in installing stream gauges upstream of the four villages as each is located near the headwaters of their respective catchments. Therefore the stream gauge will either be located at the top of the catchment, and not capable of measuring any significant flows, or located close to the village which eliminates the potential warning time, negating the benefit of having the gauge. ### Additional Requirements for Gunning The rate of rise of floodwaters and depth of inundation at Gunning could potentially lead to catastrophic consequences for events greater than the 500 year ARI. For example, in a PMF event, floodwaters will rise at a rate of about 4 m per hour (refer Figure 2.10) and inundate parts of the village by more than 6 m (refer Figure 2.12). To reduce the risk of loss of life at Gunning, there would be merit in installing a flood warning system that includes an alarm that is triggered by a level recorder on Meadow Creek at say the Sewage Treatment Plant. The *DFRMP* should include a scoping study to determine the costs associated with the installation and ongoing maintenance of the flood warning system, as well as the required trigger levels. Table 3.7 sets out the indicative costs associated with the installation and ongoing maintenance of a land-based flood warning system for the village of Gunning. TABLE 3.7 INDICATIVE COST OF INSTALLING A FLOOD WARNING SYSTEM FOR GUNNING | Item | Budget - \$ | |---|-----------------------| | Installation of telemetered stream gauge on Meadow Creek | 30,000 | | Installation of broadcast system at Gunning | 100,000 | | Development of Operations and Maintenance Manual | 10,000 | | Maintenance of gauge and broadcast system over a 20 year period | 53,000 ⁽¹⁾ | | Total Cost | 193,000 | Present worth value of maintenance costs based on a 7 per cent discount rate. FVFRMS_V1_Report_{Rev 1.2].doc November 2016 Rev. 1.2 Page 47 ### 3.6.1.3 Predicted Rainfall Data As noted previously, overland flow paths develop through existing development at the four villages as runoff from the local sub-catchments makes it way over land towards the major watercourses. Response times from these catchments are too short for implementation of an effective warning system based on rainfalls recorded during the storm event. However, emergency management procedures based on predicted rainfalls could be considered for inclusion in the NSW SES's Local Flood Plan. Relationships between predicted rainfall depths and consequences within the local sub-catchments could be developed using the flood models generated as part of the *Flood Studies*, which considered the responses of the drainage system to a range of design floods. The prior wetness of the catchment could be included as an additional variable. The success of this approach depends on the lead time and accuracy of rainfall predictions. At present the accuracy of making quantitative predictions of rainfall especially in the case of localised thunderstorms is limited by lack of radar cover especially in rural areas of the state. Therefore, establishing a flood warning system based on predicted rainfalls has not been included in the *FRMP* due to the limited accuracy of the predictions and the high costs associated with developing such a flood forecasting system. ### 3.6.1.4 Severe Weather Warnings Whilst the current services provided by BoM for the Southern Tablelands region (i.e. for severe weather and thunderstorms) are generally considered adequate (mainly because they are the highest level of service provided by a government agency), it is noted that broadcast options for these warnings have not kept pace with mobile technology and do not support SMS alerting. BoM has traditionally been the sole provider of weather warning services in Australia, however, in recent years a number of alternative service providers have emerged in the private sector. These providers typically offer either extended weather warning capabilities, or the capacity to deliver weather warnings via additional communication channels. Any flood broadcast system that is established must have the following essential capabilities: - > Location-based alerting based on geographically targeted redistribution of BoM's existing weather warnings; and - > SMS delivery of these location based alerts to both Council staff and occupiers of the floodplain. Based on enquiries made during the preparation of the Combined Catchments of Whartons, Collins and Farrahars Creeks, Bellambi Gully and Bellambi Lake Floodplain Risk Management Study and Plan (L&A, 2014e), the indicative costs for these essential capabilities would be approximately \$12,000 per year, plus an additional cost of \$0.30 per resident registration per month. Council would only be subject to minimal additional costs of \$165 if they were to pay for the yearly registration of the 46 properties (24 residential, 16 commercial and six public) that experience above-floor inundation at the 100 year ARI. Additional costs, albeit minor would also be associated with the dissemination of alerts to occupiers of the Crookwell Caravan Park, as well as the two camping grounds in Gunning. The present worth value of running the scheme over a 20 year period assuming a 7 per cent discount rate is estimated to be about \$127,000. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 48 A scoping study would be required to develop the system design and refine the cost estimates above, including further consultation both within Council and potential service providers.⁵ ### 3.6.2 Improved Emergency Planning and Response ### 3.6.2.1 Flood Response Planning in the Upper Lachlan Shire As mentioned in Section 2.13, the Upper Lachlan Shire Local Flood Plan, which covers preparedness measures, the conduct of response operations and the coordination of immediate recovery measures for all levels of flooding, is presently being developed. Volume 1, which was adopted by NSW SES in June 2013, includes information on the following: - Introduction; this section of the Local Flood Plan identifies the responsibilities of the NSW SES Local Controller and NSW SES members and supporting services such as the Police, BoM, Ambulance, Country Energy, Fire Brigades, Department of Community Services, Council, etc. The Local Flood Plan identifies the importance for NSW SES and Council to coordinate the development and implementation of a public education program to advise the population of the flood risk. - > Preparedness; this section deals with activities required to ensure the Local Flood Plan functions during the occurrence of the flood emergency. - > Response. The Crookwell NSW SES maintains an operation centre at the Local NSW SES Headquarters at McIntosh Road which is located on the northern side of Crookwell, while the Collector NSW SES maintains an operation centre at the Local NSW SES Headquarters at Bourke Street which is located on the southern side of the village. - > Response operations will commence: on receipt of a severe weather warning for flash flooding from BoM; or when other evidence leads to an expectation of flooding within the Shire. Sources of Flood Intelligence identified will include the BoM, Southern Highlands Region headquarters and Council. - > The major watercourses at the four villages do not have monitored flood gauges and therefore no flood warnings are issued by BoM for Upper Lachlan Shire. The NSW SES and Council monitor the potential problem areas listed in Volume 2 Hazard and Risk in the Upper Lachlan Shire (yet to be prepared). - Recovery, involving measures to ensure the long term welfare for people who have been evacuated, recovery operations to restore services and clean up and de-briefing of emergency management personnel to review the effectiveness of the Local Flood Plan. ## 3.6.2.2 Incorporation of Flood Data from FRMS&P Report in Local Flood NSW SES should ensure information contained in this report on the impacts of flooding on urban development, as well as recommendations regarding flood warning and community education are used to develop Volume 2 of the *Upper Lachlan Shire Local Flood Plan*. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 49 ⁵ Note that any severe weather alert messaging system would need to be derived in consultation with the NSW SES and BoM to ensure consistency of messaging and warning advice. - 1 The Flood Threat includes the following sub-sections: - 1.1 Land Forms and River Systems ref. Sections 2.1 and 2.2 of the report for information on these topics. - 1.2 Storage Dams The indicative
extent of the impact resulting from failure of the Todkill Park Dam on Kiamma Creek and the Cullen Street Dam on the Cullen Street Overland Flow Path are contained in Section 2.11 of the report. - 1.4 Characteristics of Flooding Indicative extents of inundation for the 100 year ARI and PMF events and the typical times of rise of floodwaters at key locations on both the major watercourses and MOF paths are shown on Figures 2.5 to 2.20. Table 2.2 summarises the impact flooding has on the critical infrastructure at the four villages. The location of critical infrastructure relative to the flood extents at each village are shown on Figures 2.21 to 2.24. - 1.5 Flood History Recent flood experience at the four villages is discussed in Section 2.3 of the report, while the results of modelling the two recent storms of December 2010 and March 2012 are presented in the Flood Studies. - **1.6 Flood Mitigation Systems There are no significant flood mitigation systems at any of the villages.** - 1.7 Extreme Flood Events The PMF was modelled and the indicative above-ground and above-floor depths of inundation presented in this report (Figures 2.8, 2.12, 2.16 and 2.20). ### 2 - Effects on the Community Information on the properties affected by the 100 year ARI design flood are included in this report (Figures 2.5, 2.9, 2.13 and 2.17). As floor level data used in this assessment were estimated from the LiDAR survey and "drive by" survey they are indicative only. While fit for use in estimating the economic impacts of design floods, the data should not be used to provide specific details of the degree of flood affectation of individual properties. Table E1 in Appendix E contains the following information in relation to the inundation of existing road and pedestrian crossings at the four villages: - assessed minimum road/bridge deck level; - > time to commencement of overtopping following the onset of heavy rain; - > time to peak following the onset of heavy rain; and - maximum depth of inundation. The above flood related information is given for design storms with ARI's of 20 and 100 years, as well as the PMF. ### 2.1 - Crookwell By inspection of the values set out in **Table E1**, floodwater begins to overtop to majority of the road and pedestrian crossings at Crookwell at the 20 year ARI level of flooding. The roads begin to overtop between about 1.5 - 4 hours following the onset of heavy rainfall during the 20 year ARI event, reducing to 0.5 - 2 hours in a 100 year ARI event. Depths of overtopping vary at each location, but, with the exception of the pedestrian bridge (CR_X2), do not exceed 0.8 m in the 20 year ARI event. Figure 2.21 shows the location of critical infrastructure relative to the flood extents for 20 and 100 year ARI flood, as well as the PMF. Refer Section 2.5 and Table 2.2 for details of affected infrastructure. Figures 3.1 and 3.2 show the flood emergency response planning classifications for the 100 year ARI and PMF events, respectively based on the definitions set out in the Floodplain Risk Management Guideline — Flood Emergency Response Classification of Communities (DECC, 2007). A key feature of flood behaviour at Crookwell is the confined nature of the hazardous flooding for flood events up to the 100 year ARI, with damaging flooding limited to sections of the Cullen Street Overland Flow Path. This hazardous flooding does not encroach on existing development. There are isolated pockets of hazardous flooding along the local overland flow paths in flood storage areas where depths in excess of 1.0 m are experienced. Depths of above-floor inundation in existing development are generally less than 0.4 m. As shown in Figure 3.2, the flood hazard in the Crookwell River, Kiamma Creek and the Cullen Street Overland Flow Path increase significantly at the PMF, which results in a significant number of residential developments along Goulburn Street being subject to depths of above-floor inundation up to 2.0 m. There are two other dwellings, one on Findhorn Street and another on Corcoran Place that would be subject to hazardous flow in an extreme flood event. Evacuation of these dwellings would need to occur well before the floodwaters reach these levels. ### 2.2 - Gunning As shown in Table E1, the Hume Highway and Yass Street remain flood free in events up to the 100 year ARI, whilst the Lerida Street causeway is rendered inaccessible for minor flood events. Figure 2.22 shows the location of critical infrastructure relative to the flood extents for 20 and 100 year ARI flood as well as the PMF. Refer Section 2.5 and Table 2.2 for details of affected infrastructure. Figures 3.3 and 3.4 show the flood emergency response planning classifications for the 100 year ARI and PMF events, respectively based on the definitions set out in the Floodplain Risk Management Guideline — Flood Emergency Response Classification of Communities (DECC, 2007). The hazardous flooding is generally confined to the Meadow Creek floodplain and its tributaries at the 100 year ARI, with an additional hazardous flow path shown through residential allotments upstream of Yass Street on the eastern side of Meadow Creek. It is noted that no existing dwellings are affected by hazardous flooding up to 100 year ARI. There is a hazardous flow path through the commercial centre of town between Warrataw Street and Yass Street. As a result, the Gunning Motel becomes isolated and any guests must be evacuated by wading through floodwater to higher ground at the Jack Shaw Bridge. For floods slightly larger than the 100 year ARI event, the depths of water in this area increase significantly and wading would become difficult. Therefore, the Gunning Motel should be evacuated prior to Meadow Creek surcharging its left banks at Cullavin Street. Figure 2.12 shows indicative depths of above-ground and above-floor inundation for the PMF. This assumes that the railway embankment downstream of the village does not fail, resulting in ponding depths greater than 2.0 m in a significant number of properties, including the police station. ### 2.3 - Collector Table E1 shows that for a 20 year ARI event and greater, Murray Street is overtopped and evacuation out of the village must occur via Church Street onto the Federal Highway. The Federal Highway remains flood free at the 100 year ARI level of flooding. Figure 2.23 shows the location of critical infrastructure relative to the flood extents for 20 and 100 year ARI flood, as well as the PMF. Refer Section 2.5 and Table 2.2 for details of affected infrastructure. Figures 3.5 and 3.6 show the flood emergency response planning classifications for the 100 year ARI and PMF events, respectively based on the definitions set out in the Floodplain Risk Management Guideline — Flood Emergency Response Classification of Communities (DECC, 2007). The hazardous flooding is confined to the Collector Creek floodplain and does not encroach on any existing development. There are two rural residential properties and one commercial property located on the Collector Creek floodplain that have access to the village via Murray Street. Whilst only the commercial property experiences above-floor inundation at the 100 year ARI, the two residential properties are located on low flood islands and are only accessible by boat. The access to these properties is cut-off at the 20 year ARI, therefore evacuation will have to take place during the early stages of a flood event. As shown in Figure 3.6, at the PMF these properties will be subject to depths of above-floor inundation greater than 1.0 m. An additional rural residential type dwelling on Murray Street south of Collector Creek will experience above-floor inundation, but evacuation can be made on foot to higher ground to the west. ### 2.4 - Taralga Table E1 shows that access to Goulburn via the Taralga Road will be cut-off at the 20 year ARI, and access across Meadow Creek at Walsh Street is cut-off at the 100 year ARI. Figure 2.24 shows the location of critical infrastructure relative to the flood extents for 20 and 100 year ARI flood as well as the PMF. Refer Section 2.5 and Table 2.2 for details of affected infrastructure. Figures 3.7 and 3.8 show the flood emergency response planning classifications for the 100 year ARI and PMF events, respectively based on the definitions set out in the Floodplain Risk Management Guideline — Flood Emergency Response Classification of Communities (DECC, 2007). A key feature of Main Stream flooding behaviour at Taralga is the confined nature of the hazardous flooding to the in-bank area of Corroboree Creek for flood events up to the 100 year ARI. There are isolated pockets of hazardous flooding along the local overland flow paths west of Corroboree Creek and depths of above-floor inundation in existing development are generally less than 0.4 m. The aged care facility on Bunnaby Street is subject to inundation by overland flow which is generated from the local catchment which lies to its south. One of the four buildings comprising the facility will experience above-floor inundation at the 100 year ARI level of flooding (refer Figure 2.17). As the structure is built in cut, overland flows pond up to a depth of 230 mm in front of the reception area. Although the velocities are relatively minor, evacuation during a 100 year ARI storm event would prove difficult due to the depth of water. At the PMF, the hazardous flooding is still maintained within the banks of Corroboree Creek. However, a number of hazardous overland flow paths develop through the village. As shown in Figure 2.20, fifteen residential dwellings would experience above-floor inundation of up to a depth of 0.4 m, while the aged care facility on Bunnaby Street will be inundated to a depth of about 1.0 m. ### 3.6.3 Public Awareness Programs Community awareness and appreciation of the existing flood hazards in the floodplain would promote proper land use and development in flood affected areas. A well
informed community would be more receptive to requirements for flood proofing of buildings and general building and development controls imposed by Council. One aspect of a community's preparedness for flooding is the "flood awareness" of individuals. This includes awareness of the flood threat in their area and how to protect themselves against it. It is fair to assume that the level of awareness drops as individuals' memories of previous experience dim with time. The improvements to flood warning arrangements described above, as well as the process of disseminating this information to the community, would represent a major opportunity for increasing flood awareness throughout the four villages. Means by which community awareness of flood risks can be maintained or may be increased include: - > displays at Council offices using the information contained in the present study and photographs of historic flooding in the area; and - > talks by NSW SES officers with participation by Council and longstanding residents with first-hand experience of flooding in the area. ### **Additional Requirements for Gunning** As mentioned in Section 3.6.1.2, the potential for loss of life to occur at Gunning during an extreme flood event is significant, especially given the close proximity of the Barbour Park, and to a lesser extent the Gunning Showground camping grounds. Both camping grounds are popular with owners of caravans and mobile homes and the occupants would generally be unaware of the flooding potential of the two camping sites. It would therefore be prudent to develop flood evacuation plans for each camping site and provide suitable signage that: - a) informs the occupants of the camping grounds of the flood prone nature of the area; and - b) identifies the evacuation routes which are to be used during a flood event. The Barbour Park Camping Ground would is impacted by floods which are slightly larger than 20 year ARI, with vehicular access to Yass Street cut at the 100 year ARI level of flooding. While vehicular evacuation could be undertaken along Saxby Lane during a 100 year ARI flood event, it is not recommended as Saxby Lane is cut by floodwater at its intersection with Warrataw Street during an extreme flood event. Evacuation is therefore recommended along the alignment of an existing access track which leads to high ground in Biala Street. While the Gunning Showground Camping Ground is located on land which lies above the peak 100 year ARI flood level in Meadow Creek, it would be inundated to depths of up to 3.5 m during a PMF event. Evacuation of the camping ground to higher ground would need to be in a westerly direction along Park Street. ### 3.6.4 Dam Safety Emergency Plans There is no information available regarding the construction of the Todkill Park and Cullen Street dams, in particular the material used to form the embankments and their standard of compaction. The results of a preliminary investigation undertaken as part of the *FRMS* (refer Section 2.11) showed that the embankments would be overtopped by major floods and that in the event of a dam-break occurring in conjunction with a 100 year ARI flood, peak levels could rise by up to 0.5 m higher than the natural flood level. Consequently there is a high risk of failure in the event of a major flood and there may also be a significant risk of a Sunny Day failure due to internal piping of the embankment, especially in regards to the Cullen Street Dam. Therefore, the Population at Risk is likely to be sufficiently high to justify apportionment of at least a "Significant" Consequence Category and probably a "High C" category to both dams. Given the above, there is justification for the inclusion of the preparation of a DSEP for both dams as a priority measure in the FRMP. As noted previously, the flood models developed in the Flood Studies and later updated as part of the FRMS could be used for the dam-break analyses. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 54 The Villages of Crookwell, Gunning, Collector and Tareiga Floodplain Risk Management Study and Draft Plan Depending on the assessment of the Consequence Category for the dam it may also be appropriate to recommend the installation of a rain gauge on the headwaters of the Kiamma Creek catchment with telemetered reporting of rainfall depths, together with reporting of storage levels to Council. The indicative cost of this instrumentation would be around \$30,000, with annual maintenance costs of around \$5,000. Table 3.8 over the page gives an indicative budget for the data collection activities analysis and possible instrumentation components of the DSEP. TABLE 3.8 INDICATIVE COST OF DAM SAFETY EMERGENCY PLANS | Item | Budget - \$ | |--|-------------| | Survey of Storage Area to determine volume impounded | 30,000 | | Geotechnical testing and reporting embankment conditions | 40,000 | | Hydraulic analysis and preparation of DSEP Documentation, including a Flood Annex for future Local Flood Plan for Upper Lachian Shire. | 100,000 | | Rainfall and water level recording instrumentation at the dam (provisional item) | 30,000 | | Total Cost | 200,000 | ### 3.7 Summary The findings of the review of potential measures for incorporation in the *DFRMP* are summarised in **Table 3.9** at the end of this chapter. This Chapter has reviewed a number of potential floodplain management measures. Preliminary hydraulic modelling of the Flood Modification measures has been undertaken, along with the preparation of indicative cost estimates and economic analysis. A Combined Detention Basin Scheme has been developed for Crookwell comprising the construction of two detention basins, in combination with the upgrade of the existing transverse drainage structure at Goulburn Street on the Cullen Street Overland Flow Path. While the Combined Trunk Drainage Upgrade Scheme would eliminate the frequent incidences of surcharging of the trunk drainage system at Goulburn Street, together with the removal of above-floor flooding in three dwellings and one commercial building, its inclusion in the *FRMP* cannot be justified due to the low hazard nature of flooding in the aforementioned dwellings and commercial building, together with its relatively high cost and low benefit/cost ratio (the estimated cost of the scheme is about \$4.0 Million, while its benefit cost ratio is about 0.13). Property Modification measures involving planning controls for future development in flood prone areas, as well as removal or flood proofing existing residential property were also considered. Planning controls are an essential component of the FRMP. Introduction of a Flood Policy to guide future development in the four villages is recommended; a draft of the policy is presented in Appendix D. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.2 Page 55 The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan Response Modification measures aimed at improving emergency management procedures and increasing the flood awareness of the population were also evaluated. Response Modification measures which are supported comprise promotion by Council of flood awareness and incorporation of flood data included in this *FRMS* in the NSW SES's Local Flood Plan (currently in preparation), and the development of a severe weather alert system for each village. In view of the potential increases in flood levels resulting from a failure of the Todkill Park and Cullen Street dams, preparation of the DSEP's, as required by the Dam Safety Committee, should be included in the *FRMP*. However, funding would need to be provided by Council (as the owner of the Todkill Park Dam) and the private owner of the Cullen Street Dam, as the preparation of the DSEP's would not qualify for funding under the NSW Government's floodplain management program. ## SUMMARY OF REVIEW OF POTENTIAL FLOODPLAIN MANAGEMENT MEASURES FOR INCLUSION IN THE DRAFT FLOODPLAIN RISK MANAGEMENT PLAN | | | | | | | Flood
Modification | | | | | | Type of
Measure | |--|--|---|---|--|---|--|---
---|--|---|--|--------------------| | | | Gunnling | | | | | | | | | | Village | | | Cultavia Street Levee | Biala Sirest Local
Drainage Lipgrade | Meadow Creek
Channel Works | Mesdow Creek
Stream Clearing | Saleyards Road
Detention Basin | Detention Basins on
Cullen Street
Overland Flow Path
in combination with
Goutsurn Street
Trunk Drainage
Upgrade | Detention Basins on
Culien Street
Overland Flow Path | Goulburn Sireet
Trunk Dreinege
Upgrade | King Road Locat
Drainage Upgrade | Goulbum Street Local
Drainage Upgrade | Crookwell River and
Klama Creak Stream
Clearing | Massare | | | Construct levee along left bank of
Mandow Creak between Warrelaw
Street and the Jack Shaw Bridge (Yess
Street). | Upgrade local drainage system between
Biele Street and Yass Street. | Demoksh Barbour Park welr. | Remove existing willow trees and dense
vegetation along the reach of Meedow
Craek between Lerida Street and
Cullarin Street. | Construct detention beain in vecent
allotment adjacent to Saleyands Road. | Construct delention basins upstream of outsing development on Culses Street Owerland Flow Path; one upstream of Culsen Street and the other upstream of Grange Road. Upgrade existing transverse drainage sinculure at Goulburn Street on the Culsen Street Overland Flow Path. | Construct detention basins upstream of
existing development on Culten Street
Overland Flow Path; one upstream of
Culten Street and the other upstream of
Grange Road. | Upgrade existing fransverse drainage
structure at Goulburn Street on the
Culien Street Overland Flow Path. | Upgrade local drainage system along
King Road between Elizabeth Street and
the Crookwell River. | Upgrade local piped drainage system in
vicinity of Goulburn Street and Warne
Street Intersection. | Remove existing willow trees and dense
vegetation along the reach of the
Crookwell River believen Laggan Road
and the projection of Kossis Street, and
along the reach of Klamma Creek
between Harley Road and Sateyards
Road. | Description | | especial and commerce gaveropment. | Prevent surcharge of Meadow Creek at Culevin Street. Divert local everland flow originaling from west of Guishing Showground every from the cummercial centre. Provide level of protection (freeboard) to existing | Remove nutrance flooding in existing residential and
commercial development on Yass Street. | Lower peak flood levels in Needow Creek to provide level
of protection (freeboard) to existing development. Prevent succharge of Meadow Creek at Cullavin Street. | Lover peak flood levels in Meadow Creek to provide level of protection (freeboard) to existing development. Prevent surcharge of Meadow Creek at Cullanin Street. | _ | | Reduce peak flood levels through existing development
slong Culten Street Overland Flow Path | Increase capacity of transverse drainage studium which
reduces magnitude of flow surcharging Goulburn Lene and
Goulburn Street | Remove nuisance flooding through existing residential
development in Etzabeth Street, King Road, Crown Street,
Parker Street and Hall Crescent. | Remove nuissance flooding in existing commercial development on Goutburn Street. | Lower flood levels along the Crookwell River and Klamma
Creek. Reduce risk of blockage of road crossing due to itse build-
up of woody debts. | Objective | | flooding which occurs in events alightly larger than 100 year ARI. | Levee Option 2 preferred. Prevents flow breading out of Meadow Creek at Cullavin Street. Reduces ponding levels in existing residential and commercial allotments by up to 200 mm (refer Figure CA-S). | Benefits of scheme are only localised (refer Figure C4.1). | Lowers peak flood levels in Meedow Creek by up to 50 mm at the Jack Shaw
Bridge, but has negligible impact at Cullevin Street, therefore does not reduce
the megnitude of flow surcharging Meedow Creek at this location. | Impect of stream clearing localised to reach of charms! where vegetation is removed. No impect un flooding in existing development. Naced for regular maintenance to ensure cleared floodplain is maintened. | 15 - 2 | Peak flood levels between Cullen Street and confluence with Klamme Creek reduced by over 200 mm (refer Figure C3.7 in Appendix G). Peak flows in Cullen Street Overland Flow Peth reduced by more than half (refer Table C3.2).Removes above floor inundation in existing development. Preliminary cost estimate of scheme is \$4 Million. Benefiticost ratio is 0.13. | Peak flood levels between Cullen Street and confluence with Klamma Creek reduced by over 200 mm (refer Figure G3.5 in Appendix C). Above-floor inumdation removed in four buildings (three residential) and one commercial). Peak flows in Cullen Street Overland Flow Path reduced by more than half (refer Table G3.2). | Upgrade results in increased flood levels in downstream development (refer
Figure C3.3 in Appendix C). Peak flows I Cullen Street Overland Flow Path are too large to be conveyed
through reasonably steed culverts. | No effect on a number of properties subject to above-floor inundation (refer Figure 03.2 in Apparetix C). Reduction in nulsance overland flow through approximately 25 strimerts. | existing commercial • Benefits limited to existing commercial developments on Goddburn Street. | impact of stream clearing localised to reach of channel where vegetation is removed (refer Figure G3.1 in Appendix C). No impact on flooding in existing development. Need for regular maintenance to ensure cleared floodptein is maintained. | Evaluation | | | 8 | × | 7 | 8 | : 3 | · . | * | 8 | 3 | 3 | | including in | Cont'd Over Page 57 Lyali & Associates The Villages of Crookwell, Gunning, Collector and Taraiga Floodplein Risk Management Study and Draft Plan ## TABLE 3.9 (Cont'd) SUMMARY OF REVIEW OF POTENTIAL FLOODPLAIN MANAGEMENT MEASURES FOR INCLUSION IN THE DRAFT FLOODPLAIN RISK MANAGEMENT PLAN | | | | Response
Modification | | | | Property
Modification | | | Flood | | Type of
Measure | |---|--|--|--|---|---|--|--|---|---|---|---|--------------------| | Codeman | | | | | All four
villages | | | , | Taraiga | Collector | | Village | | Dem Safety
Emergency Plan for
Culien Sireel Dam | Dem Safety
Emergency Plan for
Todkill Park Dam | Public Awaraness
Programs | Improved Emergency
Response Planning | Warning System | | House
Raising | Voluntary Purchase | Controls over Future Development | Orchard Street Local
Drattage Upgrade | Collector Bypess
Channel | George Street
Drainage Upgrade | Measure | | Develop Dem Safely Emergency Plan for Reduce the risk to fife Cullen Street Dam. | Develop Dam Safety Emergency Plan for
Tockill Park Dam. | Educate the public on the nature of flood
dark. | | Develop a land-based flood warning
system for Gunning. | Develop severe weather warning elect
and broadcast system. | Raise dwellings that are inundeded
above-floor level at the 100 year ARI. | Purchase residential property that is
effected by hiszardous flooding. | Develop flood policy that Imposes
planning controls on future development
in the four villages. | Upgrade local drainage system between
Orchard Street and Corroborse Creek. | Construct a channel around existing
development parallel to the Faderal
Highway. | Upgrade trunk drainage system between
Federal Highway and Bourke Street. | Description | | • Reduce the risk to sife | Reduce the risk to iffe | Improves communities understanding of dangers and risks
associated with flooding and ensures residents are
prepared. | Outline preparedness measures, the conduct of response
operations and the coordination of immediate necessary
measures for all levels of flooding at Crookwell, Gunning. Collector and Turalga. | To warning occupiers of the floodplain at Gunhing of
rapidly itsing water lavels in Mandow Creek. | Provides warning of polential severe weather which could
next in densiging flooding. Allows residents to take action in removing/litting contents
above floor level. | Raise dwellings that ere inundeted • Prevents above-floor inundation of individual residences. above-floor level at the 100 year ARL. | that is "Removes dwellings from areas subject to hazardous shouting conditions, reducing the risk of loss of life. | Reduce polential flood hazard and demages in future
developments on flood labbe land. | Remove overland flow through stolments between Orchard
Street and Corroboree Creek. | Remove overland flow through existing development in
George Street and Bourks Street. | Remove overland flow through existing development in
George Street and Bourke Street. | Objective | | Write more detailed investigation will need to be certed out to confirm its
classification, the preparation of a DSEP would assist the various stakeholders
in understanding the risks associated with the autising dam and set out
to receive the reproduct matterance and also its northly sourced. | While more detailed investigation will need to be carried out to commit as classification, the preparation of a DSEP would assist the various stelepholeus in understanding the risks associated with the existing dam and set out procedures for its ongoing maintenance and also its possible upgrade. | _ | _ | There is n adjacent broadcest. The broad wat its high great to high great. | | | There are Voluntary of above-1 0.27 and I | Negrety ap
floodplain. Planning a
the draft F | | - Removes :
- Significant | - Ramoves : | E valuation | | ž | | | | | | | | | ā | ž | 3 | including in | The Villages of Crookwell, Gunning, Collector and Taralga Floodplein Risk Menagement Study and Dratt Plan ### 4 SELECTION OF FLOODPLAIN MANAGEMENT MEASURES ### 4.1 Background NSWG, 2005 requires a Council to develop a *FRMP* based on balancing the merits of social, economic and environmental considerations which are relevant to the community. This chapter sets out a range of factors which need to be taken into consideration when selecting the mix of works and measures that should be included in the *FRMP*. The community will have different priorities and, therefore, each needs to establish its own set of considerations used to assess the merits of different options. The considerations adopted by a community must, however, recognise the State Government's requirements for floodplain management as set out in NSWG, 2005 and other relevant policies. A further consideration is that some elements of the *FRMP* may be eligible for subsidy from State and Federal Government sources and the requirements for such funding must, therefore, be taken into account. Typically, State and Federal Government funding is given on the basis of merit, as judged by the following criteria: - > The magnitude of damage to property caused by flooding and the effectiveness of the option in mitigating damage and reducing the flood risk to the community. - Community involvement in the preparation of the FRMP and acceptance of the option. - > The technical feasibility of the option (relevant to structural works). - > Conformance of the option with Council's planning objectives. - > Impacts of the option on the environment. - > The economic justification, as measured by the benefit/cost ratio of the option. - > The financial feasibility as gauged by Council's ability to meet its commitment to fund its part of the cost. - > The performance of the option in the event of a flood greater than the design event. - ➤ Conformance of the option with Government Policies (e.g. NSWG, 2005 and Catchment Management objectives). ### 4.2 Ranking of Options A suggested approach to assessing the merits of various options is to use a subjective scoring system. The chief merits of such a system are that it allows comparisons to be made between alternatives using a common "currency". In addition it makes the assessment of alternatives "transparent" (i.e. all important factors are included in the analysis). The system ranks alternatives based on the best available data providing a method by which Council can reexamine its options and if necessary, debate the relative scoring given to aspects of the plan. Each option is given a score according to how well the option meets the considerations discussed above. In order to keep the scoring simple the following system is proposed: The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan - +2 Option rates very highly - +1 Option rates well - 0 Option is neutral - 1 Option rates poorly - 2 Option rates very poorly The scores are added to get a total for each option. Table 4.1 to 4.4 presents a suggested scoring matrix for the options reviewed in Chapter 3 at each of the four villages. This scoring has been used as the basis for prioritising the components of the DFRMP. The proposed scoring and weighting shown in Table 4.1 to 4.4 should be carefully reviewed by the Committee as part of the process of finalising the overall DFRMP. ### 4.3 Summary Table 4.1 to 4.4 indicates that there are good reasons to consider including the following elements into the *DFRMP*: - > Planning Controls via a Flood Policy for future development in the Upper Lachlan Shire. - > Incorporation of the catchment specific information on flooding impacts contained in this Study in NSW SES Response Planning and Flood Awareness documentation for the study area. - > Improvements to the flood warning and broadcast system. - Undertaking the preparation of a Dam Safety Emergency Plan for both the Todkill Park and Cullen Street dams and inclusion of an Annexe on emergency management procedures in the event of a dam failure in the NSW SES's future Local Flood Plan for Upper Lachlan Shire. - Improvements to the trunk drainage system along the Cullen Street Overland Flow Path, including the upgrading of the Cullen Street Dam and the construction of a new detention basin immediately to the east of the Crookwell Golf Course. Property modification measures such as voluntary purchase of residential property or house raising schemes were not considered justified. Page **61** Lyall & Associates # TABLE 4.1 ASSESSMENT OF POTENTIAL FLOODPLAIN MANAGEMENT MEASURES FOR INCLUSION IN THE FLOODPLAIN RISK MANAGEMENT PLAN VILLAGE OF CROOKWELL | Option | Impact on
Flooding/
Reduction in
Flood Risk | Community
Acceptance | Technical
Feasibility | Planning
Objectives | Environ.
Impacts | Economic Justification | Financial
Feasibility | Extreme | Government
Policies and
TCM
Objectives | Score | |--|--|-------------------------|--------------------------|------------------------|---------------------|------------------------|--------------------------|----------|---|--------------| | | | | | Flood Modification | ation | | | | | | | Crookwell River and Kiamma Creek Stream Clearing | 0 | +2 | <u>.</u> | 0 | 7 | -2 | | 0 | 0 | င် | | Goulbum Street Trunk Drainage Upgrades (CR5.5) | <u> </u> | *2 | ± | <u> </u> | 0 | -2 | 4 | 0 | + | ů | | Detention Basins on Cullen
Street Overland Flow Path (CR1
+ CR2) | | 7 | * | ± | 0 | نا | 1 | 0 | + 1 | * | | Detention Basins on Cullen Street Overland Flow Path (CR1 + CR2) and Goulburn Street Trunk Drainage Upgrades (CR5.5) | ,
N | 0 | ÷2 | ÷2 | . | ່ເ | ń | 0 | <u> </u> | ‡ | | Saleyards Road Detention Basin | 0 | <u>-</u> | <u> </u> | 0 | 0 | 'n | | 0 | 0 | ట | | Goulbum Street Local Drainage
Upgrade | 0 | +2 | . | 0 | 0 | -2 | <u> </u> | 0 | 0 | 0 | | King Road Local Drainage
Upgrade | <u>+</u> | ÷2 | e | 0 | 0 | ż | -1- | 0 | 0 | 0 | | | | | Pr | Property Modification | ation | | |
| | | | Controls over Future Development (via draft Flood Policy); | [†] 2 | * 2 | ţ, | ÷2 | 0 | o | 0 | + | * 2 | * | | Voluntary Purchase of
Residential Property | 0 | -1 | 0 | 0 | 0 | -2 | 0 | <u>,</u> | . | ငံ | | House Raising in Low Hazard
Areas | 0 | ప | O | 0 | 0 | స | 0 | 4 | †
1 | 4 | Public Awareness Programs ż 0 <u>+</u> November 2016 Rev. 1.2 FVFRMS_V1_Report_[Rev 1.2].doc Page 62 Lyall & Associates System and Response Improved Emergency Planning Severe Weather Option Warning Reduction in Impact on Flooding/ Flood Risk ដ ţ Acceptance Community 4 ż Feasibility Technical <u>+</u> 0 VILLAGE OF CROOKWELL Response Modification Objectives Planning <u>+</u> <u>+</u> Environ Impacts 0 0 0 Justification Economic <u>+</u> <u>*</u> + Feasibility Financial + <u>+</u> 0 Extreme Flood <u>+</u> <u>+</u> <u>+</u> Policies and Government Objectives TCM <u>+</u> <u>+</u> ţ Score + ¢ ţ TABLE 4.1 (Cont'd) ASSESSMENT OF POTENTIAL FLOODPLAIN MANAGEMENT MEASURES FOR INCLUSION IN THE FLOODPLAIN RISK MANAGEMENT PLAN Page 80 The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan Page 63 Lyall & Associates # TABLE 4.2 ASSESSMENT OF POTENTIAL FLOODPLAIN MANAGEMENT MEASURES FOR INCLUSION IN THE FLOODPLAIN RISK MANAGEMENT PLAN VILLAGE OF GUNNING | Option | Impact on
Flooding/
Reduction in
Flood Risk | Community | Technical
Feasibility | Planning
Objectives | Environ.
Impacts | Economic
Justification | Financial
Feasibility | Extreme
Flood | Government
Policies and
TCM
Objectives | Score | |--|--|----------------|--------------------------|------------------------|---------------------|---------------------------|--------------------------|------------------|---|---------------| | | | | | Flood Modification | tion | | | | | | | Meadow Creek Stream Clearing | 0 | + 2 | 4 | 0 | | -2 | 7 | 0 | 0 | ပ် | | Meadow Creek Channel Works | 0 | ង់ | o | 0 | 7 | 0 | 0 | ٥ | 0 | ů | | Biala Street Local Drainage
Upgrades | 0 | ‡2 | 0 | 0 | Q | -2 | -1 | 0 | 0 | <u> </u> | | Cullavin Street Levee | <u>+</u> | 0 | + | +2 | 0 | -2 | -1 | 0 | 0 | ده | | | | | P | Property Modification | ation | | | | | | | Controls over Future Development (via draft Flood Policy); | *
N | ก้ | † | +2 | 0 | 0 | 0 | ± | ‡2 | *111 | | Voluntary Purchase of
Residential Property | 0 | 7 | 0 | 0 | 0 | -2 | 0 | -1 | +1 | ယ် | | House Raising in Low Hazard
Areas | 0 | -2 | 0 | 0 | 0 | -2 | 0 | -7 | +1 | 4 | | | | | R. | Response Modification | cation | | | | | | | Severe Weather Warning
System | +2 | +2 | 0 | +1 | 0 | +1 | +1 | 1 | +1 | \$ | | Development of Flood Plan | +2 | +2 | 1+ | +1 | 0 | +1 | +1 | +1 | +1 | *10 | | Public Awareness Programs | + - | +2 | 0 | +1 | 0 | * | 0 | * | †2 | \$ | | | | | | | | | | | | | The Villages of Crookwell, Gunning, Collector and Taraige Floodplain Risk Management Study and Draft Plan Page 64 Lyall & Associates | * | +2 | + | 0 | +1 | 0 | ± | 0 | +2 | +1 | Public Awareness Programs | |----------|--|------------------|--------------------------|---------------------------|---------------------|------------------------|--------------------------|-------------------------|--|--| | ÷10 | 1 | <u>+</u> | +1 | + 1 | 0 | +1 | +1 | +2 | +2 | Development of Flood Plan | | ÷ | <u> </u> | ± | + | + | 0 | ± | 0 | +2 | +2 | Severe Weather Warning
System | | | | | | | cation | Response Modification | R. | | | | | 4 | <u>.</u> | 7 | 0 | 'n | 0 | 0 | Đ | -2 | 0 | House Raising in Low Hazard
Areas | | ω | <u>.</u> | 7 | 0 | -2 | 0 | 0 | 0 | 4 | 0 | Voluntary Purchase of Residential Property | | ± 1 | ₺ | ± | 0 | 0 | 0 | +2 | +2 | +2 | 2 | Controls over Future Development (via draft Flood Policy); | | | | | | | ation | Property Modification | Pr | | | | | 0 | 0 | 0 | -1 | -2 | 0 | <u> </u> | ± | +1 | 0 | Collector Bypass Channel | | <u>±</u> | 0 | 0 | ٠ | -2 | 0 | *1 | *1 | + 2 | 0 | George Street Trunk Drainage
Upgrade | | | | | | | tion | Flood Modification | 70 | | | | | Score | Government Policies and TCM Objectives | Extreme
Flood | Financial
Feasibility | Economic
Justification | Environ.
Impacts | Planning
Objectives | Technical
Feasibility | Community
Acceptance | Impact on Flooding/
Reduction in Flood Risk | Option | # TABLE 4.3 ASSESSMENT OF POTENTIAL FLOODPLAIN MANAGEMENT MEASURES FOR INCLUSION IN THE FLOODPLAIN RISK MANAGEMENT PLAN VILLAGE OF COLLECTOR Page 82 The Villages of Crookwell, Gunning, Collector and Taratge Floodplain Risk Management Study and Draft Plan age 65 Lyall & Associates # TABLE 4.4 ASSESSMENT OF POTENTIAL FLOODPLAIN MANAGEMENT MEASURES FOR INCLUSION IN THE FLOODPLAIN RISK MANAGEMENT PLAN VILLAGE OF TARALGA | 1 | | - | <u></u> | 0 | <u> </u> | 0 | \$ | + | Public Awareness Programs | |---|---------|--------------------------|---------------------------|---------------------|------------------------|--------------------------|-------------------------|--|--| | | + | <u>+</u> | <u>+</u> | 0 | <u>+</u> | 1+ | +2 | +2 | Development of Flood Plan | | | +1 | + | +1 | 0 | <u> </u> | 0 | +2 | +2 | Severe Weather Warning
System | | | | | | cation | Response Modification | R. | | | | | | 7 | 0 | -2 | 0 | O | 0 | -2 | 0 | House Raising in Low Hazard
Areas | | | 7 | 0 | -2 | 0 | O | 0 | ٠ | 0 | Voluntary Purchase of
Residential Property | | | + | 0 | 0 | 0 | ÷2 | +2 | +2 | +2 | Controls over Future Development (via draft Flood Policy); | | | | | | ation | Property Modification | Pa | | | | | | 0 | -2 | -2 | 0 | 0 | ±. | +2 | 0 | Orchard Street Trunk Drainage
Upgrade | | 1 | | | | tion | Flood Modification | | | | | | | Extreme | Financial
Feasibility | Economic
Justification | Environ.
Impacts | Planning
Objectives | Technical
Feasibility | Community
Acceptance | Impact on
Flooding/
Reduction in
Flood Risk | Option | The Villages of Crookwell, Gunning, Collector and Tarafga Floodplain Risk Management Study and Draft Plan The Villages of Crookwell, Gunning, Collector and Teralga Floodplain Risk Management Study and Draft Plan ### 5 DRAFT FLOODPLAIN RISK MANAGEMENT PLAN ### 5.1 The Floodplain Risk Management Process The Floodplain Risk Management Study (FRMS) and draft Floodplain Risk Management Plan (FRMP) have been prepared for the four villages as part of a Government program to mitigate the impacts of major floods and reduce the hazards in the floodplain. The DFRMP which is set out in this Chapter has been prepared as part of the Floodplain Risk Management Process in accordance with NSW Government's Flood Prone Land Policy. The first steps in the process of preparing the *DFRMP* were the collection of flood data and the review of the *Flood Studies* adopted by Upper Lachlan Shire Council on 19 December 2013. The *Flood Studies* were the formal starting process of defining management measures for flood liable land and represented a detailed technical investigation of flood behaviour. ### 5.2 Purpose of the Plan The overall objectives of the FRMS were to assess the impacts of flooding, review policies and options for management of flood affected land and to develop an FRMP which: - > Sets out the recommended program of works and measures aimed at reducing over time, the social, environmental and economic impacts of flooding and establishes a program and funding mechanism for the FRMP. - > Proposes amendments to Council's existing policies to ensure that the future development of flood affected land at the four villages is undertaken so as to be compatible with the flood hazard and risk. - > Ensures the FRMP is consistent with NSW SES's local emergency response planning procedures. - > Ensures that the FRMP has the support of the community. ### 5.3 The Study Area The study area for this FRMP comprises the villages of Crookwell, Gunning, Collector and Taralga. The FRMP applies in areas affected by the three flood producing mechanisms that occur at the four villages: Main Stream flooding on the principal tributaries (Crookwell River, Kiamma Creek and the Cullen Street Overland Flow Path at Crookwell, Meadow Creek at Gunning, Collector Creek at Collector and Corroboree Creek at Taralga), , Minor Tributary flooding resulting from the overflows of the minor watercourses which drain the relatively steep hillsides bordering the aforementioned creeks, and the shallower and slower moving Major Overland Flow (MOF) through existing development resulting from localised rainfall in the vicinity of the villages. The solution of problems resulting from surcharges of the minor stormwater drainage systems in individual allotments remote from the MOF paths or in the local street system, which may occur during localised storms, is outside the scope of the present investigation. ### 5.4 Community Consultation The Community Consultation process provided valuable direction over the course of the investigations, bringing together views from key Council staff, other departments and agencies, and importantly, the views of the community gained through: FVFRMS_V1_Report_{Rev 1.2}.doc November 2016 Rev. 1.0 Page 66 The Villages of Crookwell, Gunning, Collector and Taraige Fioodplain Risk Management Study and Draft Plan - the delivery of a Community Newsletter and Questionnaire to property occupiers located in the floodplain allowed the wider community to gain an understanding of the issues being addressed as part of the study; and - meetings of
the Floodplain Management Committee (FMC) to discuss results as they became available. ### 5.5 Economic Impacts of Flooding Table 2.6 shows the number of properties which would be flooded to above-floor level and the damages experienced for the various classes of property in the four villages. Damages in Crookwell, Gunning, Collector and Taralga for a range of design flood events are evaluated in Appendix B of the FRMS. ### 5.6 Indicative Flood Extents Figure 2.5 (Crookwell), Figure 2.7 (Gunning), Figure 2.9 (Collector) and Figure 2.11 (Taralga) show the indicative extent of flooding for the 100 year ARI design flood which has been adopted as the "planning flood" for the purposes of specifying flood related controls over future development. The extent of flooding is indicative only, being based on the hydrologic model of the catchment and hydraulic model of the drainage system developed in the Flood Studies. Floor levels of properties were estimated from a "drive by" survey. Consequently the results should not be used to identify the degree of flood affectation or otherwise of individual properties, for which a site specific survey would be required. This level of accuracy in the flood mapping is supported by Office of Environment and Heritage (OEH), as the costs associated with undertaking of detailed ground survey in each flood affected property lies outside the scope of the NSW Government's floodplain program. Under the program, it is Council's responsibility to identify the flood risk within the floodplain and prepare maps showing indicative flood extents (i.e. the mapping presented in this FRMS report), with the onus being on the property owner to carry out sufficient survey to allow a more accurate picture of flood affection to be described in his/her allotment. To allow Council to assess individual development proposals for the purposes of the draft *Flood Policy* (ref. Section 5.8 below), a detailed site survey would be required to allow the extent of flooding and the flood hazard to be evaluated using the results of the *Flood Studies*. For this reason, proponents will be required to submit a detailed survey plan of the site for which development is proposed. ### 5.7 Structure of Floodplain Risk Management Study and Plan The FRMS and DFRMP are supported by Appendices which provide additional details of the investigations. A summary of the DFRMP proposed for the study area along with broad funding requirements for the recommended measures are shown in Table S1 at the commencement of the FRMS report. These measures comprise preparation of planning documentation by Council, improvements to the severe weather warning and alert system, community education on flooding by Council and NSW SES to improve flood awareness and response, as well as the preparation of Dam Safety Emergency Plans for the Todkill Park and Cullen Street dams at Crookwell. The measures will over time achieve the objectives of reducing the flood risk to existing and future development for the full range of floods. The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan The *DFRMP* is based on the following mix of measures which have been given a provisional priority ranking according to a range of economic, social, environmental and other criteria set out in **Table 4.1** to **4.4** of the report: - > Measure 1 Planning and development controls for future development in flood prone areas. - Measure 2 Improvements in flood emergency response planning. - Measure 3 Increase public awareness of the risks of flooding in the Upper Lachlan community. - Measure 4 Scoping Study to assess requirements for the development and operation of a location-based severe weather warning system for the four villages, as well as the installation and operation of a telemetered water level recorder and land-based broadcasting system for the village of Gunning. - Measure 5 Implementation of a location-based severe weather warning and broadcasting system in each village, as well as the installation and operation of a landbased flood warning system for the village of Gunning. - Measure 6 Undertaking the preparation of a submission to DSC to confirm the preliminary findings of the FRMS, namely that the Todkill Park Dam on Kiamma Creek and the Cullen Street Dam on the Cullen Street Overland Flow Path at Crookwell (refer Figure 2.1 for location) have a "High C" Consequence Category and therefore should be prescribed under the Dams Safety Act 1978. - Measure 7 Undertaking the preparation of Dam Safety Emergency Plans (DSEP's) for both the Todkill Park and Cullen Street dams and inclusion of an Annexe on emergency management procedures in the event of a dam failure in the NSW SES's Upper Lachian Local Flood Plan. ### 5.8 Planning and Development Controls The results of the FRMS indicate that an important measure for Upper Lachlan Shire Council to adopt in the floodplain would be strong floodplain management planning applied consistently by all branches of Council. ### 5.8.1 Flood Policy The draft Flood Policy proposed for the four villages (Appendix D) used the concepts of flood hazard and hydraulic categorisation outlined in Section 2.6 of the report to develop flood related controls for future development in flood prone land at the four villages. The Flood Policy caters for the three types of flooding in the Upper Lachlan area: Main Stream Flooding (MSF) resulting from overflows of the channels of the Crookwell River and Kiamma Creek at Crookwell, Meadows Creek at Gunning, Collector Creek at Collector and Corroboree Creek at Taralga. These flows may be several metres deep in the channels and relatively fast moving with velocities up to 2 m/s. For planning purposes, flooding along the Cullen Street Overland Flow Path at Crookwell has been assessed in the same way as flow in the channels of the Crookwell River and Kiamma Creek. The Villages of Crookwell, Gunning, Collector and Taralge Floodplain Risk Menagement Study and Draft Plan - ➤ Minor Tributary Flooding (MTF) resulting from overflows of the minor watercourses which drain the relatively steep hillsides bordering the aforementioned creeks. While flow in the inbank area of the minor watercourses is generally greater than 0.5 m, overbank flow is relatively shallow and slow moving with velocities typically less than 0.5 m/s. - > Major Overland Flow (MOF) is present along several flow paths that run through the developed parts of the four villages. Flows on the MOF paths would typically be up to 300 mm deep, travelling over the surface at velocities less than 0.5 m/s. To implement the recommended approach set out in the FRMS&DP, clause 6.1 of Upper Lachlan LEP 2010 would require minor amendment. A new clause aimed at addressing potential flood evacuation issues in parts of Crookwell, Gunning, Collector and Taralga would also need to be inserted into Upper Lachlan LEP 2010 (ref. Section 5.9 below). Figures D1.1, D1.2, D1.3 and D1.4 in the Flood Policy are extracts from the Flood Planning Map relating to the villages of Crookwell, Gunning, Collector and Taralga, respectively. The extent of the FPA (the area subject to flood related development controls) is shown in a solid red colour on the Flood Planning Map and has been defined as follows: - ➤ In areas affected by MSF, the FPA is based on the traditional definition of the area inundated by the 100 year ARI plus 500 mm freeboard. - > In areas affected by MTF, the FPA is defined as areas where depths of inundation in a 100 year ARI event exceed 150 mm. - ➤ In areas affected by MOF, the FPA is defined as the extent of the High and Low Hazard Floodway zones, as well as areas where depths of inundation in a 100 year ARI event exceed 150 mm. The illustration over the page demonstrates the application of the variable freeboard approach (both positive and negative) in the derivation of the FPA in areas subject to MSF, MTF and MOF. It is proposed that properties intersected by the extent of the FPA would be subject to \$149 flood affectation notification and planning controls graded according to flood hazard (dependent on depth of inundation and flow velocity). Annexures 2.1 and 2.2 in the Flood Policy set out the graded set of flood related planning controls which have been developed for the four villages. Annexure 2.1 deals with areas subject to both MSMTF, while Annexure 2.2 deals with areas affects by MOF. Figures D1.5, D1.6, D1.7 and D1.8 in the Flood Policy are the Development Controls Matrix Map for the villages of Crookwell, Gunning, Collector and Taralga, respectively and show the area over which both Annexures 2.1 and 2.2 apply. Minimum floor level (MFL) requirements would be imposed on future development in properties that are identified as lying either partially or wholly within the extent of the FPA shown on the Flood Planning Map. The MFL's for all land use types affected by MSF and MTF is the level of the 100 year ARI flood event plus 500 mm freeboard, while the MFL's for all land use types affected by MOF is the level of the 100 year ARI flood event plus 300 mm freeboard. For areas outside the FPA shown on the Flood Planning Map, the MFL for all land use types is the level of the 100 year ARI flood event plus 500 mm freeboard. The illustration over the page demonstrates the application of the variable freeboard approach in the derivation of the MFL requirements in areas subject to MSF, MTF and MOF. The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan | | FREEBOARD (mm) ON PEA | K 100 YEAR ARI FLOOD LEVEL | |---------------------------|----------------------------|----------------------------| | TYPE OF FLOODING | FLOOD PLANNING LEVEL (FPL) | MINIMUM FLOOR LEVEL (MFL) | | MAIN STREAM FLOODING | + 500 | + 500 | | MINOR TRIBUTARY FLOODING | - 150 | + 500 | | MAJOR OVERLAND FLOW (MOF) | - 150 | + 300 | illustration showing the application of the variable
freeboard approach (both positive and negative) in the derivation of the Flood Planning Area (FPA) and Minimum Floor Levels (MFL) requirements in areas affected by Main Stream Flooding (MSF), Minor Tributary Flooding (MTF) and Major Overland Flow (MOF) FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.0 Page 70 The Villages of Crookwell, Gunning, Coffector and Teralga Floodplain Risk Management Study and Draft Plan Figures D1.9, D1.10, D1.11 and D1.12 in the Flood Policy are the Flood Hazard Map for the villages of Crookwell, Gunning, Collector and Taralga, respectively. The figures show the subdivision of the floodplain into a number of categories which have been used as the basis for developing the graded set of planning controls. The floodplain has been divided into the following four categories in areas that are affected by MSF and MTF: - Inner Floodplain (Hazard Category 1), which is shown in solid red colour. This zone comprises areas where factors such as the depth and velocity of flow, time of rise, isolation on Low Flood Islands and evacuation problems mean that the land is unsuitable for some types of development. It includes areas of High and Low Hazard Floodway, Flood Storage, Flood Fringe, Intermediate Floodplain and Outer Floodplain areas. Erection of a buildings and carrying out of work not permitted; use of land, subdivision of land and demolition subject to State Environmental Planning Policies and Local Environmental Plan provisions are not permitted in the zone. - Inner Floodplain (Hazard Category 2), which is shown in solid yellow colour. This zone comprises Low Hazard Floodway and Flood Storage areas where development other than Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable development is permitted provided it is capable of withstanding hydraulic forces and sited on the allotment to minimise adverse redirections of flow towards adjacent properties. Council may require a Flood Risk Report if it considers that the proposal has the potential to significantly affect flooding behaviour in adjacent properties. - Intermediate Floodplain, which is shown in solid blue colour. This area is the remaining land lying outside the extent of the Inner Floodplain zones, but within the FPA. While land use permissibility would be as specified by State Environmental Planning Policies or the Local Environmental Plan, Essential Community Facilities, Critical Utilities and Flood Vulnerable development such as schools and housing for aged and disabled persons would be subject to additional controls as set out in Annexure 2.1 of the Flood Policy. - Outer Floodplain, which is shown in solid cyan colour. This area represents the remainder of the floodplain between the intermediate Floodplain and the extent of the Probable Maximum Flood (PMF) (that is, the extent of the floodplain). While this area is outside the extent of the FPA, controls on Essential Community Facilities, Critical Utilities schools and Flood Vulnerable development identified in Annexure 2.1 of the Flood Policy would apply. The floodplain has been divided into the following two additional categories in areas that are affected by MOF: - ➤ High Hazard Floodway, which is shown in solid orange colour. Future development in this area is not permitted under the Flood Policy. - ➤ Low Hazard Floodway / Flood Storage, which is shown in solid green colour. Residential, commercial and industrial type development can occur in this zone subject to compliance with a prescribed set of flood related development controls. The Intermediate Floodplain zone in areas subject to MOF is the remaining land lying outside the extent of the Floodway and Flood Storage areas but within the FPA, while the Outer Floodplain zone represents the remainder of the floodplain between the Intermediate Floodplain and the extent of the PMF. Flood related planning controls in these two areas are similar to those that apply to development in areas subject to MSF and MTF, with the notable exception being the adoption of a reduced freeboard for defining MFL's. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.0 Page 71 The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan ### 5.9 Revision to LEP 2010 Clause 6.1 of *Upper Lachlan LEP 2010* entitled "Flood Planning" outlines its objectives in regard to development of flood prone land. It is similar to the standard Flood Planning Clause used in recently adopted LEPs in other NSW country centres and applies to land beneath the FPL. The FPL referred to is the 100 year ARI flood plus an allowance for freeboard of 500 mm. The area encompassed by the FPL is known as the FPA and denotes the area subject to flood related development controls, such as locating development outside high hazard areas and setting minimum floor levels for future residential development. Whilst appropriate for Main Stream flooding, the present clause 6.1 would have resulted in a large part of the urban area which is affected by shallow overland flow being subject to flood affectation notification on Planning Certificates issued under S149 of the EP&A act. To implement the Flood Policy set out in Appendix D, clause 6.1 of *Upper Lachlan LEP 2010* would require minor amendment. Suggested amendments are given in Section 3.5.1.4. Figures D1.1, D1.2, D1.3 and D1.4 in Appendix D are extracts from the *Flood Planning Map* referred to in clause 6.1. It is also recommended that a new floodplain risk management clause be include in the *Upper Lachlan LEP 2010*. The objectives of the new clause are as follows: - > in relation to development with particular evacuation or emergency response issues (e.g. group homes, residential care facilities, hospitals, etc.) to enable evacuation of land subject to flooding in events exceeding the flood planning level; and - > to protect the operational capacity of emergency response facilities and critical infrastructure during extreme flood events. The new clause would apply to land identified as Outer Floodplain (i.e. land which lies between the FPA and the PMF). Suggested wording in relation to this new clause is given in Section 3.5.1.4. ### 5.10 Improvements in Emergency Planning and Flood Awareness Two measures are proposed in the *FRMP* to improve flood emergency planning and maintain awareness in the community of the threat posed by floods: Measure 2 involves the preparation by NSW SES of the *Upper Lachlan Shire Local Flood Plan* using information on flooding patterns, times of rise of floodwaters and flood prone areas identified in this report. Figures have been prepared showing indicative extents of flooding, high hazard areas, expected rates of rise of floodwaters in key areas and locations where flooding problems would be expected. Section 3.6.2.2 references the locations of key data within the *Flood Studies* and this report. Council should also take advantage of the information on flooding presented in the *Flood Studies* and the *FRMS*, including the flood mapping, to inform occupiers of the floodplains of the flood risk (included as **Measure 3** of the *FRMP*). This information could be included in a Flood Information Brochure to be prepared by Council with the assistance of NSW SES containing both general and site specific data and distributed with the rate notices. The community should also be made aware that a flood greater than historic levels or the planning level can, and will, occur at some time in the future. The *FRMP* should be publicised and exhibited in Council offices and at community gathering places to make residents aware of the measures being proposed. Sign FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.0 Page 72 The Villeges of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan posts should be erected in the Barbour Park and Gunning Showground Camping Grounds which is located on the left overbank of Meadow Creek at Gunning advising that a) the area is subject to flooding and b) the preferred route for evacuating the grounds during a flood event. NSW SES's Local Flood Plan should also include information on the consequences of a dam break of the Todkill Park Dam located on Kiamma Creek and the Cullen Street Dam located on the Cullen Street Overland Flow Path at Crookwell. A "Sunny Day" dam break study would need to form part of a submission which should be prepared to the NSW Dam Safety Committee to confirm or otherwise the preliminary findings of the FRMS, namely the "High C" Consequence Category which has been assigned to both dams. Preparation of the submission has been included as Measure 6 of the FRMP. If the "High C" Consequence Categories are confirmed by the NSW Dam Safety Committee, then Council would need to prepare a Dam Safety Emergency Plan (DSEP) for its Todkill Park Dam. Council would also need to liaise with the owner of the Cullen Street Dam regarding the need to prepare a DSEP for the privately owned structure (Measure 7). ### 5.11 Severe Weather and Flood Warning Service Measure 4 involves the undertaking of a scoping study to assess the requirements and costs of developing and operating a location-based severe weather warnings service at each village. In addition to this service, a telemetered water level recorder would be installed on Meadow Creek at the Gunning Sewage Treatment Plant. The recorder which would be used to trigger a land-based alarm system which would advise occupiers of the floodplain of rapidly rising water levels in Meadow Creek. The implementation of a location-based severe weather warnings service at each village has been included as Measure 5 in the FRMP. ### 5.12 Mitigating Effects of Future Development Under the zoning associated with the *Upper Lachlan LEP 2010*, future residential development is envisaged in the currently rural areas zoned *R2 Low Density Residential*, *R5 Large Lot Residential* and *RU5 Village*. Hydraulic analysis
described in Chapter 3 showed that the resulting urbanisation would result in increases in downstream flood peaks and exacerbation of existing flooding problems. It will therefore be important for Council to enforce the controls set out in the *Upper Lachlan DCP* 2010 for areas zoned for future residential and industrial development to ensure that developments incorporate measures which ensure that post-project peak flows are no greater than present day values. ### 5.13 Voluntary Purchase of Residential Property Removal of housing is a means of correcting previous decisions to allow buildings in high hazard areas in the floodplain. The voluntary purchase of residential property in hazardous areas has been part of subsidised floodplain management programs in NSW. The review undertaken in the FRMS showed that implementation of a Voluntary Purchase (VP) scheme was not economically viable and could not be justified on social grounds as there are no properties located in high hazard areas of the floodplain. In any case, a VP scheme would be redundant after the completion of the elements of the Combined Drainage Upgrade Scheme. FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.0 Page 73 The Villages of Crookwell, Gunning, Collector and Taraiga Floodplain Risk Management Study and Draft Plan ### 5.14 Raising Floor Levels of Residential Property The analysis undertaken in the FRMS showed that the implementation of a voluntary house raising program which is sometimes adopted as a management measure for reducing risk in low hazard areas of the floodplain was not economically viable, could not be justified on social grounds and would be redundant after the completion of the elements of the Combined Drainage Upgrade Scheme. ### 5.15 Implementation Program The steps in progressing the floodplain management process from this point onwards are: - Floodplain Management Committee to consider and adopt recommendations of this study. In particular, the Committee should review the basis for ranking floodplain management measures (as set out in Tables 4.1 to 4.4 of the FRMS and the proposed works and measures to be included in the proposed FRMP as set out in Table S1); exhibit the draft FRMS and FRMP and seek community comment. - 2. Consider public comment, modify the document if and as required, and submit to Council. - 3. Council adopts the FRMP and submits an application for funding assistance. Assistance for funding qualifying projects included in the FRMP may be available upon application under the Commonwealth and State funded floodplain management programs currently administered by Office of Environment and Heritage (OEH). - Assistance for funding qualifying projects included in the FRMP may be available upon application under the Commonwealth and State funded floodplain management programs, currently administered by OEH. - As funds become available from Government agencies and/or Council's own resources, implement the measures in accordance with the established priorities. The FRMP should be regarded as a dynamic instrument requiring review and modification over time. The catalysts for change could include new flood events and experiences, legislative change, alterations in the availability of funding, reviews of Council's planning strategies and importantly, the outcome of some of the studies proposed in this report as part of the FRMP. In any event, a thorough review every five years is warranted to ensure the ongoing relevance of the FRMP The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Dreft Plan ### 6 GLOSSARY OF TERMS Note: For expanded list of definitions, refer to Glossary contained within the NSW Government Floodplain Development Manual, 2005. | TERM | DEFINITION | |---|--| | Average Recurrence
Interval (ARI) | The average return period between the occurrence of a particular flood event For example, a 100 year ARI flood has an average recurrence interval of 100 years. | | Australian Height Datum
(AHD) | A common national surface level datum corresponding approximately to mean sea level. | | Flood Affected Properties | Properties that are either encompassed or intersected by the Flood Planning Area (FPA). | | Floodplain | Area of land which is subject to inundation by floods up to and including the Probable Maximum Flood (PMF) event, that is, flood prone land. | | Flood Planni ng Area | The area of land that is shown to be in the Flood Planning Area on the Flood Planning Map. | | Flood Planning Map | The Flood Planning Map referred to in the Upper Lachlan Loca Environmental Plan 2010, extracts of which are shown on Figures D1.1 D1.2, D1.3 and D1.4 in Appendix D. | | Flood Planning Level
(FPL)
(General Definition) | The combinations of flood levels and freeboards selected for planning purposes, as determined in floodplain risk management studies and incorporated in floodplain risk management plans. | | Flood Planning Level
(FPL) | For land within the Flood Planning Area subject to Main Stream flooding in the four villages, the Flood Planning Level (FPL) is the level of the 100 year Average Recurrence Interval (ARI) flood event plus 500 mm freeboard. | | | For land within the Flood Planning Area subject to Minor Tributary flooding in the four villages, the FPL is the level of the 100 year ARI flood event minus 150 mm freeboard. | | | For land within the Flood Planning Area subject to MOF in the four villages the FPL is the level of the 100 year ARI flood event minus 150 mm freeboard | | | For areas outside the Flood Planning Area shown on the Flood Planning Mep, the FPL is the level of the 100 year ARI flood event plus 500 mm freeboard. | | Flood Prone/Flood Liable
Land | Land susceptible to flooding by the PMF. Flood Prone land is synonymous with Flood Liable land. | | Ficodway | Those areas of the floodplain where a significant discharge of water occurs during floods. They are often aligned with naturally defined channels Floodways are areas that, even if only partially blocked, would cause a significant redistribution of flood flow, or a significant increase in flood levels. | The Villages of Crookwell, Gunning, Collector and Taraiga Floodplain Risk Management Study and Draft Plan | TERM | DEFINITION | |---|---| | Flood Storage Area | Those parts of the floodplain that may be important for the temporary storage of floodwaters during the passage of a flood. Loss of flood storage can increase the severity of flood impacts by reducing natural flood attenuation. | | Freeboard | Provides reasonable certainty that the risk exposure selected in deciding a particular flood chosen as the basis for the FPL and MFL is actually provided. It is a factor of safety typically used in relation to the setting of floor levels, leves crest levels, etc. Freeboard is included in the FPL and MFL. | | Habitable Room | In a residential situation: a living or working area, such as a lounge room, dining room, kitchen, bedroom or workroom. | | | In an industrial or commercial situation: an area used for offices or to store valuable possessions susceptible to flood damage in the event of a flood. | | Inner Floodplain (Hazard
Category 1) | Comprises areas where factors such as the depth and velocity of flow, time of rise, isolation and evacuation difficulties mean that the land is unsuitable for future development. It includes areas of High and Low Hazard Floodway. Flood Storage, Flood Fringe, Intermediate Floodplain and Outer Floodplain areas. Future development is not permitted in this zone. | | Inner Floodplain (Hazard
Category 2) | Comprises areas of Low Hazard Floodway and Flood Storage areas where development other than Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable is permitted provided it is capable of withstanding hydraulic forces and sited on the allotment to minimise adverse redirections of flow towards adjacent properties. Council may require a Flood Risk Report if it considers that the proposal has the potential to significantly affect flooding behaviour in adjacent properties. | | intermediate Floodplain | For Main Stream flooding it is the strip of land on each side of the two Inne Floodplain zones and the line defining the indicative extent of flooding resulting from the occurrence of the 100 year ARI flood plus 500 mm (i.e. the FPA). | | | For MOF it is the land outside the High Hazard Floodway and Low Hazard Floodway / Flood Storage zones where the depth of inundation during the 100 year ARI storm event is greater than 150 mm. | | Local Drainage | Land on an overland flow path where the depth of inundation during the 100 year ARI storm event is less than 150 mm. | | Main Stream Flooding | The inundation of normally dry land occurring when water overflows the natural or artificial banks of a major stream; for the study area, the main streams are the Crookwell River and Kiamma Creek at Crookwell, Meadow Creek at Gunning, Collector Creek at Collector and Corroborse Creek at Taralga. For planning purposes, flooding along the Cullen Street
Overland Flow Path at Crookwell has been assessed in the same way as flow in the channels of the Crookwell River and Kiamma. | | Major Overland Flow
(MOF) | Where the depth of overland flow during the 100 year ARI storm event i greater than 150 mm. | FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.0 The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan | TERM | DEFINITION | |--|---| | Minimum Floor Level
(MFL)
(General Definition) | The combinations of flood levels and freeboards selected for setting the Minimum Floor Levels (MFL's) of future development located in properties subject to flood related planning controls. | | Main Stream and Minor
Tributary Flooding
Minimum Floor Level | For properties subject to Main Stream and Minor Tributary flooding (MSMTF) in the four villages, the Minimum Floor Level (MFL) is the level of the 100 year ARI flood event plus 500 mm freeboard. | | (MSMTF MFL) | Note that for areas outside the Flood Planning Area shown on the Flood Planning Map, the MSMTF MFL is the level of the 100 year ARI flood event plus 500 mm freeboard. | | Major Overland Flow
Minimum Floor Level
(MOF MFL) | For properties subject to MOF in the four villages, the MOF MFL is the level of the 100 year ARI flood event plus 300 mm freeboard. | | (mor many | Note that for areas outside the Flood Planning Area shown on the Flood Planning Map, the MOF MFL is the level of the 100 year ARI flood event plus 500 mm freeboard. | | Minor Tributary Flooding | The inundation of normally dry land occurring when water overflows the natural or artificial banks of a minor stream. For the study area, these are typically located in the rural areas which border the four villages. | | Outer Floodplain | This is defined as the land between the FPA and the extent of the PMF. | | Probable Maximum Flood
(PMF) | The largest flood that could conceivably occur at a particular location. Generally, it is not physically or economically possible to provide complete protection against this event. The PMF defines the extent of flood prone land, that is, the floodplain. | | | For the study area, the extent of the PMF has been trimmed to include depths greater than 150 mm. | ### 7 REFERENCES Bureau of Meteorology (2003). "The Estimation of Probable Maximum Precipitation in Australia: Generalised Short-Duration Method". Dam Safety Committee, NSW (June 2010) "DSC1B - Background to DSC Risk Policy Context". Dam Safety Committee, NSW (June 2010) "DSC3A - Consequence Categories for Dams". Dam Safety Committee, NSW (June 2010) "DSC3B - Acceptable Flood Capacity for Dams" Department of Environment, Climate Change and Water, NSW (2007) "Floodplain Risk Management Guideline – Flood Emergency Response Classification of Communities". Department of Environment, Climate Change and Water, NSW (2007) "Floodplain Risk Management Guideline – Practical Considerations of Climate Change". Department of Environment, Climate Change and Water, NSW (2008) "Floodplain Risk Management Guideline No 4. Residential Flood Damage Calculation". Graham, Wayne J, (September 1999) "A Procedure for Estimating Loss of Life Caused by Dam Fallure", DSO-99-06, U.S. Department of the Interior, Bureau of Reclamation – Dam Safety Office Howells et al. (2004) "Defining the Floodway - Can One Size Fit Ali?" FMA NSW Annual Conference, Coffs Harbour, February 2004. Lyall and Associates (2008) "Lower Butlers Gully Floodplain Risk Management Study and Plan". Lyall and Associates (2013) "Four Villages Flood Studies - Data Collection Report". Lyall and Associates (2014a) "The Village of Crookwell Flood Study". Lyall and Associates (2014b) "The Village of Gunning Flood Study". Lyall and Associates (2014c) "The Village of Collector Flood Study". Lyall and Associates (2014d) "The Village of Taralga Flood Study". Lyali and Associates (2014e) "Combined Catchments of Whartons, Collins and Farrahars Creeks, Bellambi Gully and Bellambi Lake Floodplain Risk Management Study and Plan". Lyall and Associates (2016) "Concept Design of Baradine Town Levee". New South Wales Government (2005) "Floodplain Development Manual: the Management of Flood Liable Land". Parsons Brinckerhoff, 2009 "Upper Lachlan Strategy - Vision 2020". FVFRMS_V1_Report_[Rev 1.2].doc November 2016 Rev. 1.0 Page 78 The Villages of Crookwell, Gunning, Collector and Tarelge Floodplain Risk Menagement Study and Draft Plan The Institution of Engineers, Australia (1998) "Australian Rainfall and Runoff - A Guide to Flood Estimation", Volumes 1 and 2. Upper Lachlan Shire Council "Upper Lachlan Local Environmental Plan 2010". Von Thun J. L. and Gillette D. R. (1990), "Guidance on Breach Parameters – A Needs Assessment." Un-published U.S. Bureau of Reclamation document, Denver Colorado, 17 p. Wahl T. L. (1998), "Prediction of Embankment Breach Parameters." DSO-98-044, U.S. Department of the Interior, Bureau of Reclamation – Dam Safety Office. ## APPENDIX A COMMUNITY CONSULTATION The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan Appendix A - Community Consultation ### **TABLE OF CONTENTS** | | | | Page No. | |------------|-------|--|----------| | A1. | INTRO | DDUCTION | A-1 | | A2 | RESID | DENT PROFILE AND FLOOD AWARENESS | A-2 | | | A2.1 | General | A-2 | | | A2.2 | Experiences of Flooding | A-2 | | | A2.3 | Controls over Development in Flood Prone Areas | A-3 | | A3 | POTE | NTIAL FLOOD MANAGEMENT MEASURES | A-4 | | A 4 | INPUT | TTO THE STUDY AND FEEDBACK FROM THE COMMUNITY | A-5 | | A 5 | LOCA | L FLOODING ISSUES | A-6 | | | A5.1 | Crookwell | A-6 | | | A5.2 | Gunning | A-6 | | | A5.3 | Collector | A-6 | | | A5.4 | Taralga | A-6 | | A6 | SUMN | MARY | A-7 | | | A6.1 | Issues | A-7 | | | A6.2 | Flood Management Measures | A-7 | ### **ATTACHMENTS** | ATTACHMENT | 1 | Information FI | yer and Community | v Questionnaire | |-------------------|---|----------------|-------------------|-----------------| |-------------------|---|----------------|-------------------|-----------------| ### ATTACHMENT 2 Responses to Community Questionnaire The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan Appendix A - Community Consultation ### A1. INTRODUCTION At the commencement of the FRMS, the Consultants prepared a Community Information Flyer and a Community Questionnaire which were distributed by Council to residents bordering the main creek systems and overland flow paths in Crookwell, Gunning, Collector and Taralga (refer to Attachment 1). The Community Information Flyer was also placed in the March 2015 edition of "The Voice". The purpose of the Community Information Flyer was to introduce the objectives of the study and set the scene on flooding conditions so that the community would be better able to respond to the Community Questionnaire and contribute to the study process. The Information Flyer contained the following information: - Plans showing the extent of the study area for each village. - A statement of the objectives of the FRMS&DP; namely the development of a strategy for reducing the flood risk and minimising the long-term impact of flooding on the community at the four villages. The Community Questionnaire was structured with the objectives of: - Obtaining local information on flood experience and behaviour at residents' properties. - Determining residents' attitudes to controls over future development in flood liable areas in each village. - Inviting community views on possible flood management options which could be considered for further investigation in the FRMS and possible inclusion in the resulting FRMP. - Obtaining feedback on any other flood related issues and concerns which the residents cared to raise. This Appendix to the FRMS&DP report discusses the responses to the 10 questions included in the Questionnaire and comments made by respondents. Chapter A2 deals with the residents' experience with historic flooding, as well as determining residents' views on the relative importance of classes of development over which flood-related controls should be imposed by Council. Chapter A3 identifies residents' views on the suitability of the various options which could be considered in more detail in the FRMS&DP. Chapter A4 discusses the best methods by which the community could provide feedback to the consultants over the course of the study. Chapter A5 discusses the local flooding issues at each village as identified by the residents. Chapter A6 summarises the findings of the community consultation process. FVFRMS_V1_AppA_{Rev 1.2].doc November 2016 Rev. 1.2 Page A-1 The Villages of Crookwell, Gunning, Collector and Tareige Floodplain Risk Management Study and Draft Plan Appendix A - Community Consultation ### A2 RESIDENT PROFILE AND FLOOD AWARENESS ### A2.1 General Residents were requested to complete the *Community Questionnaire* and return it to the Consultants by 15 May 2015. The deadline was extended to include any submissions that were received after this date. The Consultants received 66 responses in total, 19 from Crookwell, 12 from Gunning, 12 from Collector, 6 from Taralga and 17 that didn't identify which village they resided. The Consultants have collated the responses, which are shown in graphical format in Attachment 2. ### A2.2 Experiences of Flooding The first six questions of the Community Questionnaire canvassed resident information such as length of time at the property, the type of property (e.g. house, unit/flat), whether the respondent
had any experience of flooding and if so which particular flood and whether they had experienced above-floor inundation. Of those who replied to the question, 28 respondents had lived in the four villages for between 5 and 20 years and 23 for more than 20 years (Question 2). Fifty-nine respondents occupied a house, 6 respondents owned vacant land and a small number were commercial occupiers or owners who lived outside of the study area (Question 3). Thirty-five respondents reported that they had information about flooding on their property (Question 4), with 27 citing their own experience and one stating that Council had provided a flood level. Thirteen reported having photographs of flooding (one respondent attached photographs of flooding in properties adjacent to George Street in Collector to their completed Questionnaire). In response to Question 5, 33 respondents reported that they had experienced flooding on their property, with 17 nominating flooding as a result of the December 2010 flood, 12 reporting flooding as a result of the March 2012 flood and 14 reporting flooding in various other historical events ranging from the 1970's to as recent as 2014. Two residents advised that they had experienced above-floor inundation in the largest flood which they had experienced (Question 6). As far as the source of flood warnings to the population of Crookwell, Gunning, Collector and Taralga is concerned (Question 7), 30 respondents advised that they had received no warnings of imminent flooding; three respondents advised being warned by TV or radio, 17 by their own observations, two by NSW SES and one by neighbours. These results are characteristic of situations where flooding is of a "flash flooding" nature with little warning time being available for the dissemination of warnings by the authorities. Most of the flooding problems appear to have been caused by "overland flow" resulting from a lack of hydraulic capacity in the local stormwater system. Refer Section A5 for a description of local flooding issues specific to each village. The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan Appendix A - Community Consultation ### A2.3 Controls over Development in Flood Prone Areas The respondents were also asked to rank from 1 to 4 the classes of development which they consider should receive protection from flooding (Question 8). Rank 1 was the most important and rank 4 the least. For most of the villages, the classes in decreasing order of importance to respondents, ranged from essential community facilities (e.g. schools, evacuation centres), vulnerable residential (e.g. aged persons accommodation), residential property and lastly, commercial business. Respondents of Collector deemed residential property of the highest importance to receive protection from flooding. These results gave a guide to the Consultants as to the appropriate location of future development of the various classes within the floodplain. For example, on the basis of community views, vulnerable residential development would receive the highest level of protection by locating future development of this nature outside the floodplain, or at least on the Outer Floodplain where flooding is very infrequent and of shallow nature. The Villages of Crookwell, Gunning, Collector and Taraiga Floodplain Risk Management Study and Draft Plan Appendix A - Community Consultation ### A3 POTENTIAL FLOOD MANAGEMENT MEASURES The respondents were also asked for their opinion on potential flood management measures which could be evaluated in the FRMS&DP (and if found to be feasible included in the Plan), by ticking a "yes" or "no" to the 11 potential options identified in Question 9. The options comprised a range of structural flood management measures (e.g. programs by Council to manage vegetation in the creek system to maintain hydraulic capacity; channel enlargements to increase capacity; detention basins to reduce downstream flood peaks; improving the stormwater system; levees to contain floodwaters); as well as various non-structural management measures (e.g. voluntary purchase of residential properties in high hazard areas; raising floor levels of houses in low hazard areas; flood related controls over new developments; improvements to flood warning and evacuation procedures; community education on flooding; and flood advice certificates). The options were not mutually exclusive, as the FRMP adopted could, in theory, include all of the options set out in the Questionnaire, or indeed, other measures to be nominated by the respondents or the FMC. The most popular measure was improving the stormwater system to capture and convey overland flows travelling to the creek system more efficiently than at present. Another highly popular structural measure was maintenance of the hydraulic capacity of the creek system by the management of vegetation in the channels and the removal of debris following storm events. Other structural measures that received less support were enlarging the creek channel to increase capacity, the construction of detention basins on the upstream reaches of the creeks to reduce downstream flood peaks and construction of levees to contain floodwaters. The implementation of flood-related controls over future development (e.g. by Council nominating minimum permissible floor levels; excluding future development from high hazard areas of high velocity and deep inundation); Council's provision of advice regarding flood affectation of existing properties to prospective purchasers (e.g. via Section 149 Certificates); improved flood warning procedures and evacuation and emergency plans; community education and flood awareness programs were strongly favoured by the respondents. A mildly negative response was given to the provision of subsidies for raising the floor levels of existing residential properties located in less hazardous zones of the floodplain and the implementation of a residential Voluntary Purchase scheme (to be administered by Council and designed to allow residents on a wholly voluntary basis to vacate high hazard areas in the floodplain). The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan Appendix A - Community Consultation ### A4 INPUT TO THE STUDY AND FEEDBACK FROM THE COMMUNITY At Question 10 residents were asked for their view on the best methods of their providing input to the Study and feedback to the Consultants over the course of the investigation. Articles in the local newspaper and communication via through Council's website were the two most popular methods. FVFRMS_V1_AppA_[Rev 1.2].doc November 2016 Rev. 1.2 Page A-6 The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan Appendix A - Community Consultation ### A5 LOCAL FLOODING ISSUES ### A5.1 Crookwell Numerous respondents cited willow trees and build-up of rubbish/debris in Kiamma Creek and Crookwell River as a problem, with water unable to be dispersed as quickly as a free flowing creek would achieve. Residents complained about inadequacies of the current stormwater system in place in Parker Street and Wade Street. Two respondents cited the inadequacies in the stormwater channel and pipe system that drains the school farm on McIntosh Road, claiming that runoff surcharges the existing channel in the farm and flows through residential blocks in Elizabeth Street as happened in the December 2010 event. It was noted that the stormwater pipes in King Road are blocked which prevents the low lying areas draining. ### A5.2 Gunning There was no mention of flooding problems attributed to Meadow Creek at Gunning. One respondent identified overland flow issues through the residential allotments south of Biala Street between Warrataw Street and Nelanglo Street. The respondent noted that there was no kerb and gutter on Biala Street or piped drainage system in the area, hence when it rains, an overland flow path develops through the allotments. ### A5.3 Collector Numerous respondents complained about the inadequacies of the current stormwater system that conveys runoff from the Federal Highway to Collector Creek. There was a consistent view that the channels and culverts do not have enough conveyance capacity to convey runoff whenever there is "heavy rain". As a results, runoff surcharges over George Street into residential properties. One respondent noted that the local stormwater drainage system often surcharges in the vicinity of Church Street. ### A5.4 Taraiga No respondents from Taralga identified major drainage issues in the village. The Villages of Crookwell, Gunning, Collector and Taraiga Floodplain Risk Management Study and Draft Plan Appendix A - Community Consultation ### A6 SUMMARY Sixty six responses were received to the *Community Questionnaire* distributed by Council to residents and business owners. The responses amounted to almost 15 per cent of the total distributed. The responses indicated a considerable interest by the community in the study. The respondents identified the two most recent flood events as occurring in December 2010 and March 2012 and provided useful information on the source and pattern of overland flows. However, there was little information of a quantitative nature; such as data on the temporal pattern of storm rainfalls and flood levels along the main flow paths, which would have assisted the Consultants in testing their catchment and floodplain models. ### A6.1 Issues The issues identified by respondents in their responses to the *Community Questionnaire* support the objectives of the study, as nominated in the attached *Community Information Flyer*, and the activities nominated in the Study Brief. No new issues were identified in regard to main stream and major overland flooding. Several respondents suggested structural flood mitigation measures which will be of assistance to the Consultants
in the development of the *FRMP*. ### A6.2 Flood Management Measures Of the *structural measures* which could be incorporated in the *FRMP*, the most popular were: maintenance programs for the control of vegetation and clearing the creek system of debris following flood events and improving the capacity of the stormwater system. Planning controls over new development in flood liable areas, flood advice certificates as well as improvements to flood warning and emergency management measures appear to be the most popular of the potential *non-structural measures* set out in the Questionnaire. There do not appear to be any new measures raised by the respondents in their responses to Question 9. FVFRMS_V1_AppA_{Rev 1.2}.doc November 2016 Rev. 1.2 Page A-7 ### **ATTACHMENT 1** ## COMMUNITY INFORMATION FLYER AND COMMUNITY QUESTIONNAIRE ## FLOODPLAIN RISK MANAGEMENT ## STUDY AND PLAN ### To the Residents of the Four Villages: Upper Lachlan Shire Council has received a grant from the NSW Government's Floodplain Management program to prepare a Floodplain Risk Management Study and Plan (FRMS&P) for the Villages of Crookwell, Taralga, Gunning and Collector. Council's main objective in undertaking the studies is to develop a Management Plan which reduces the impact of flooding on occupiers of flood prone property and reduces damages resulting from floods. The FRMS&P will build on the results of Flood Studies completed in 2014 which defined flooding patterns and flood levels in the creeks and overland flow paths in and around the Villages under present day conditions. Please see the back of this page for the approximate study areas at the Four Villages. Council has engaged the services of Lyall and Associates Consulting Water Engineers to: - Survey properties bordering the creeks and overland flow paths in the vicinity of the Villages and assess damages to private and public property resulting from floods. - Assist the NSW State Emergency Service in developing appropriate emergency response planning for flood events. - Assess the viability of measures which could be implemented to mitigate the impacts of future floods. - Assist Council in the preparation of policies which ensure that future development in flood prone areas is carried out in accordance with the flood risk. - Develop a Management Plan for land in flood prone areas of the Villages. The FRMS&P investigations will be undertaken under the direction of the Upper Lachlan Floodplain Management Committee, which comprises Government, Council, SES and Community representatives. The Office of Environment & Heritage (OEH) will supply technical and financial support. Council will in the near future issue a Community Questionnaire to residents bordering the creeks seeking information on their flood experience and their views on measures which could be implemented to mitigate the flood risk. However, any residents who do not receive a Questionnaire and who wish to contribute information are invited to contact Council using the contact details below. Please note that all information received will remain confidential. Contact: Upper Lachian Shire Council Tina Dodson - Director Environment and Planning. Phone: 4830 1000 E-mail: tdodson@upperlachlan.nsw.gov.au Copies of this Community Information flyer and the Community Questionnaire can be obtained from: www.upperlachlan.nsw.gov.au ### Four Villages Environment Floodplain Risk Management Study& Plan # Community Questionnaire This Questionnaire is part of the Four Villages Floodplain Risk Management Study and Plan, currently being prepared by Upper Lachlan Shire Council with the financial and technical support of the Office of Environment & Heritage (OEH), for the villages of Crookwell, Gunning, Taralga and Collector. It will help us determine the flood issues that are important to you. The study areas are shown on page 4 at the back of this Questionnaire. Please return your completed Questionnaire in the reply paid envelope provided by 15 May 2015. No postage stamp is required. If you have misplaced the supplied envelope or wish to send an additional submission the address is: > Lvall & Associates Consulting Water Engineers Reply Paid 78855 NORTH SYDNEY NSW 2060 | Your name and address (optional): | | | | |---|---------|---|---------------| | About your property 1. Please tick as appropriate: | | Your flood experience (If you have experienced a flood, please and Questions 4 to 7, otherwise go to Question | swer
78) | | a. I am a resident b. Other (please specify | | Do you have any information about
flooding at the property? Yes | ۵ | | 2. How long have you owned or lived address? | at this | b. No
If yes, what information do you have | ? | | a. 1 year to 5 years | ۵ | c. Own experience | 0 | | b. 5 years to 20 years | • | d. Flood levels from Council | | | c. More than 20 years (years) | ٥ | Information from State Emergency
Service (SES). | | | 3. What is your property? a. House | 0 | f. Photographs g. Other (|)
 -
 - | | b. Villa/Townhouse | 0 | 5. Have you ever experienced flooding | l, | | c. Unit/Flat/Apartment | 0 | either as a result of the creeks break | | | d. Vacant land | • | their banks or due to shallow overla | nd | | e. Other (|) a | flow through the property? | _ | | 0. 0.1101 | | a. Yes | 0 | | | | b. No
If yes, which floods? | ٥ | | | | c. December 2010 | 0 | | | | d. March 2012 | | | | | e. Other (| | | 6. In the biggest flood you have was the property flooded at of the main residence? a. No b. Yes | pove floor level | | Your opinions
managen | |--|--|----|--| | If yes, what was the depth of water What year? 7. In this biggest flood, did yo warning, and if so, from who | er over the floor? | 9. | Below is a list of
may be looked at
effects of flooding
(see plan at page.
This list is not in any of
be other options that
For each of the option
"no" to indicate if you
blank if undecided. | | (Tick one or more boxes) a. No warning whatsoever b. TV c. Radio d. Own observations e. Police f. State Emergency Service (g. Neighbours, relatives or frie h. Other (| | | a. Maintenance provegetation and a b. Enlarge the creation construct detends improve the story willage area. b. Construct permits to contain floods | | Your attitudes to Condevelopment condevelopment condevelopment condevelopment condevelopment condevelopment to protect file. | ouncil's
strols
evelopment
ou think are the
rom floods | | f. Voluntary scher property in high g. Provide funding above major floth. Specify controls flood-liable area filling, minimum i. Improve flood w | | (1=highest priority to 4=leas
a. Commercial/Business
b. Residential | st priority)
=
= | | j. Community edu
flood awareness | o #### on floodplain risk nent measures possible options that to try to minimise the g on the creek systems 4). order of importance and there may you think should be considered. ns listed, please indicate "yes" or favour the option. Please leave | | <u>Ye</u> : | 3 | <u>No</u> | |-----|--|----|-----------| | a. | Maintenance programs to clear creeks of | | | | | vegetation and debris impeding flows. | Q | Q | | b. | Enlarge the creek channels. | a | O | | C. | Construct detention basins. | 0 | a | | d. | Improve the stormwater system within the village area. | | _ | | | _ | Ð | 0 | | €. | Construct permanent levees along the creek | S | | | | to contain floodwaters. | ٥ | 0 | | f. | Voluntary scheme to purchase residential | | | | | property in high hazard areas. | 0 | 0 | | g. | Provide funding or subsidies to raise houses | \$ | | | _ | above major flood level in low hazard areas. | | 0 | | h. | Specify controls on future development in | | | | | flood-liable areas (eg. controls on extent of | | | | | filling, minimum floor levels.) | a | o | | i. | Improve flood warning and evacuation | | | | | procedures both before and during a flood. | 0 | 0 | | j. | Community education, participation and | _ | _ | | ٦. | flood awareness programs. | В | п | | la. | | 9 | J | | k. | Provide a certificate to purchasers in flood | _ | | | | prone areas, stating that the property is floor | u | | | | affected. | | - 0 | c. Vulnerable residential development (e.g. aged persons accommodation) d. Essential community facilities (eg. schools, evacuation centres) #### Other Information | | AND A LOS AND STREET BOOK AND | Best time to call is | |------|---|---| | 10. | What do you think is the best way for us to | Fax No | | | get input and feedback from the local | Email: | | | community about the results and | Ball (1991) | | | proposals from this study? (Nick ane or more boxee) | | | | a. Council's website | | | | | Who can I contact for | | | b. Articles in local newspaper | further information? | | | c. Through Council's Floodplain Risk | jui aisi nnviinaavii: | | | Management Committee u | .,, | | | d. Other (please specify | Upper Lachlan Shire Council | | | d. Other (please specify | Tina Dodson - Director Environment and Planning | | | | Phone: 4830 1000 | | 11. | If you wish us to contact you so you can | Email: tdodson@upperlachlan.nsw.gov.au | | |
provide further information, please | Eiliali, (douboni@upperiacritari.nbw.gov.ad | | | provide your details below: | | | | provide your details below. | Copies of this Questionnaire can be obtained | | | | from: www.upperlachlan.nsw.gov.au | | | Name:Address: | | | | Address: | | | | | | | | Phone (Home) | | | | Prione (nome) | C | OMMENTS | | | | OMMENTO | | | | | | | | 1 | | | Pl | ease write your comments here: | | | | • | | | 0 | | | | | | | | | | | | - | | | | | | | | | | | | | | | | 19 | | | | | | | | | | | | | | | | - | 3 | | | | | | | | | | | | | | | | 10 | 152 | | | | | | | | | | | | 11.5 | | | | | | | | | | | | | | | | 3.4 | | | # ATTACHMENT 2 RESPONSES TO COMMUNITY QUESTIONNAIRE Q2. How long have you owned or lived at this address? RESPONSE TO COMMUNITY QUESTIONNAIRE Q3. Type of Property? Q4. Do you have any information about flooding at the property? RESPONSE TO COMMUNITY QUESTIONNAIRE Q5. Have you experienced flooding through the property? Q6. Did the property flood above floor level during the biggest flood? RESPONSE TO COMMUNITY QUESTIONNAIRE #### Q7. How did you receive warning of the biggest flood? Q8. Ranking of development types most important to protect from floods. #### Q9. Possible Flood Management Options RESPONSE TO COMMUNITY QUESTIONNAIRE Q10. Best methods to get input and feedback from the local community. RESPONSE TO COMMUNITY QUESTIONNAIRE # APPENDIX B FLOOD DAMAGES #### **TABLE OF CONTENTS** | | | | Page No. | |-------------|-------|---|----------| | SYNC | PSIS | | B-1 | | B1. | INTRO | DOUCTION AND SCOPE | B-1 | | | B1.1. | Introduction | B-1 | | | B1.2. | Scope of Investigation | B-1 | | | B1.3. | Terminology | B-1 | | B2. | DESC | RIPTION OF APPROACH | B-2 | | B 3. | SOUR | CES OF DATA | B-4 | | | B3.1. | General | B-4 | | | B3.2. | Property Data | B-4 | | | B3.3. | Flood Levels Used in the Analysis | B-5 | | B4. | RESID | DENTIAL DAMAGES | B-6 | | | B4.1. | Damage Functions | B-6 | | | B4.2. | Total Residential Damages | | | B5. | COMN | MERCIAL / INDUSTRIAL DAMAGES | B-9 | | | B5.1. | Direct Commercial / Industrial Damages | B-9 | | | B5.2. | Indirect Commercial and Industrial Damages | B-10 | | | B5.3. | Total Commercial and Industrial Damages | B-10 | | 8 6. | DAMA | AGES TO PUBLIC BUILDINGS | B-12 | | | B6.1. | Direct Damages - Public Buildings | B-12 | | | B6.2. | B6.2 Indirect Damages - Public Buildings | B-12 | | | B6.3. | B6.3 Total Damages - Public Buildings | B-12 | | B7. | DAMA | AGES TO INFRASTUCTURE AND COMMUNITY ASSETS | B-14 | | B 8. | SUMN | MARY OF TANGIBLE DAMAGES | B-15 | | | B8.1. | Tangible Damages | | | | B8.2. | Definition of Terms | | | | B8.3. | Average Annual Damages | B-16 | | | B8.4. | Present Worth of Damages at the Four Villages | B-16 | | 80 | 5555 | DEMOCO | D. 40 | ## FIGURES (BOUND IN VOLUME 2) - 88.1 Crookwell Damage Frequency Curves and Cumulative Flooded Properties versus Depth of Inundation Diagram 100 year ARI (Nominal Flood Levels Case) - B8.2 Gunning Damage Frequency Curves and Cumulative Flooded Properties versus Depth of Inundation Diagram 100 year ARI (Nominal Flood Levels Case) - B8.3 Collector Damage Frequency Curves and Cumulative Flooded Properties versus Depth of Inundation Diagram 100 year ARI (Nominal Flood Levels Case) - B8.4 Taralga Damage Frequency Curves and Cumulative Flooded Properties versus Depth of Inundation Diagram 100 year ARI (Nominal Flood Levels Case) #### SYNOPSIS Estimation of flood damages to urban development was carried out to assess the impact of flooding on the community. The objectives were to allow an economic assessment of various flood management measures to be carried out in the *FRMS&DP* report at the strategic level of detail. Damages were assessed for floods ranging between the 20 year ARI and PMF events. Assessment of urban flood damages was carried out for the two categories of development on the floodplain: "Residential" and "Commercial and Industrial". A third category of development, "Public Buildings", was also included in the damages model. There were no quantitative data available on historic flood damages. Therefore the analysis was carried out using the residential flood damages model attached to "Floodplain Risk Management Guideline No. 4 - Residential Flood Damages" (DECC, 2007) (Guideline No. 4). This publication was prepared by DECC (now OEH) to allow a consistent assessment of residential damages across NSW for the economic comparison of flood management projects. In Guideline No. 4, damage assessments undertaken after major flooding in other urban centres were adjusted and used to estimate damages likely to be experienced to typical residential development in NSW. Data for the flood damages models comprised the peak water surface elevations over the extent of the study area as determined from the Flood Studies, as well as information on the unit values of damages to residential property. The depths of above-floor inundation of properties were determined from the results of the hydraulic modelling described in the Flood Studies and from estimated floor levels of each residence. The elevations of building floors were assessed by adding the height of the floor above a representative natural surface within the allotment (as estimated by visual inspection) to the natural surface elevation determined from the LiDAR survey used in the Flood Studies. The type of structure and potential for property damage were also assessed from a visual inspection. The procedures in *Guideline No. 4* allow for the estimation of structural damage to the building, damage to internals and contents, external damages and clean-up costs. The level of flood awareness and available warning time are taken into account by factors which are used to reduce "potential" damages to contents to "actual" damages. "Potential" damages represent losses likely to be experienced if no action were taken by residents to mitigate impacts. A reduction in the potential damages to "actual" damages is usually made to allow for property evacuation and raising valuables above floor level, which would reduce the damages actually experienced. The ability of residents to take action to reduce flood losses is mainly limited to reductions in damages to contents, as damages to the structure and clean-up costs are not usually capable of significant mitigation. No specific information is given in *Guideline No. 4* in relation to commercial and industrial properties. Damages to the non-residential sector depend on the nature of the enterprise, the depth of inundation over the floor area and the time available for owners to take action to mitigate losses to contents. A spreadsheet model was used to assess flood damages which was similar to the residential model in terms of estimation of depths of inundation, but used typical unit damage data which had been adopted in similar floodplain risk management studies in NSW in recent years. The number of flood affected properties and the estimated damages which could occur for various flood recurrence intervals at Crookwell, Gunning, Collector and Taralga are summarised in **Table BS1** over. FVFRMS_V1_AppB_[Rev 1.2].docx November 2016 Rev. 1.2 Page BS-1 At the 100 year ARI level of flooding at Crookwell, 103 residential properties would be flood affected (i.e. water has entered the allotment). Fourteen of those properties would experience above-floor inundation up to 300 mm in the event of a 100 year ARI flood, along with seven commercial and two public buildings. The total flood damages at Crookwell are \$1.91 Million for an event of a 100 year ARI. At the 100 year ARI level of flooding at Gunning, 34 residential properties would be flood affected. Seven of those properties would experience above-floor inundation up to 200 mm in the event of a 100 year ARI flood. Eight commercial properties and three public buildings would be flooded above floor level in the event of a 100 year ARI flood. Total flood damages at Gunning are \$0.82 Million for an event of a 100 year ARI. At the 100 year ARI level of flooding at Collector, four residential properties would be flood affected, of which none would experience above-floor inundation. One commercial property would be flooded above floor level at the 100 year ARI flood. No public buildings would be flooded at the event of a 100 year ARI flood. Total flood damages at Collector are \$0.07 Million for an event of a 100 year ARI. At Taralga, 14 residential properties would be flood affected, of which two would experience above-floor inundation up to 200 mm in the event of a 100 year ARI flood. One commercial property and one public building would be flooded above floor level in the event of a 100 year ARI flood. Total flood damages at Taralga are \$0.25 Million for an event of a 100 year ARI. The "present worth value" of damages resulting from all floods up to the magnitude of the 100 year ARI at a seven per cent discount rate are \$3.64 Million (Crookwell), \$0.83 Million (Gunning), \$0.01 Million (Collector) and \$0.48 Million (Taralga), respectively (refer Section B8 for more detail). These numbers represent the amount of capital spending which would be justified if a particular flood mitigation measure prevented flooding for all properties up to the 100 year ARI event in each village. Additional information on the damages is presented in the tables attached to Section B8 and in the figures attached to this Appendix, but bound in Volume 2 of the FRMS&DP report. # TABLE B\$1 FLOOD DAMAGES NOMINAL DESIGN FLOOD LEVELS⁽¹⁾ | | - | | Number of Properties | | | | | | |-----------|---------|-------------------|----------------------------------|-------------------|----------------------------------
-------------------|----------------------------------|-----------------| | Village | ARI | Resid | ential | Comm | | Put | olic | Total
Damage | | | (years) | Flood
Affected | Flood
Above
Floor
Level | Flood
Affected | Flood
Above
Floor
Level | Flood
Affected | Flood
Above
Floor
Level | (\$ Million | | | 20 | 74 | 8 | 8 | 6 | 2 | 2 | 1.25 | | | 100 | 103 | 14 | 9 | 7 | 2 | 2 | 1.91 | | Crookwell | 200 | 108 | 16 | 10 | 8 | 2 | 2 | 2.07 | | | 500 | 119 | 19 | 10 | 9 | 2 | 2 | 2.41 | | | PMF | 279 | 132 | 22 | 22 | 4 | 4 | 15.03 | | | 20 | 20 | 1 | 5 | 1 | 2 | 1 | 0.25 | | | 100 | 34 | 7 | 11 | 8 | 5 | 3 | 0.82 | | Gunning | 200 | 36 | 7 | 14 | 11 | 5 | 3 | 0.99 | | | 500 | 45 | 17 | 16 | 13 | 5 | 3 | 1.80 | | | PMF | 74 | 55 | 20 | 20 | 12 | 12 | 18.20 | | | 20 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00 | | | 100 | 4 | 0 | 1 | 1 | 0 | 0 | 0.07 | | Collector | 200 | 6 | 2 | 1 | 1 | 0 | 0 | 0.17 | | | 500 | 6 | 2 | 1 | 1 | 1 | 1 | 0.22 | | | PMF | 26 | 20 | 2 | 1 | 1 | 1 | 1.99 | | | 20 | 12 | 1 | 0 | 0 | 1 | 1 | 0.16 | | | 100 | 14 | 2 | 2 | 1 | 1 | 1 | 0.25 | | Taraiga | 200 | 14 | 3 | 2 | 1 | 1 | 1 | 0.28 | | | 500 | 15 | 3 | 3 | 1 | 1 | 1 | 0.36 | | | PMF | 50 | 15 | 11 | 5 | 2 | 1 | 1.40 | Nominal design flood levels computed by application of the flood levels derived from the TUFLOW model to property floor levels, without allowance for freeboard. #### **B1. INTRODUCTION AND SCOPE** #### **B1.1.** Introduction Damages from flooding belong to two categories: - > Tangible Damages - > Intangible Damages Tangible damages are defined as those to which monetary values may be assigned, and may be subdivided into direct and indirect damages. Direct damages are those caused by physical contact of floodwater with damageable property. They include damages to commercial and industrial and residential building structures and contents as well as damages to infrastructure services such as electricity and water supply. Indirect damages result from the interruption of community activities, including traffic flows, trade, industrial production, costs to relief agencies, evacuation of people and contents and clean up after the flood. Generally, tangible damages are estimated in dollar values using survey procedures, interpretation of data from actual floods and research of government files. The various factors included in the intangible damage category may be significant. However, these effects are difficult to quantify due to lack of data and the absence of an accepted method. Such factors may include: - > inconvenience - > isolation - > disruption of family and social activities - > anxiety, pain and suffering, trauma - > physical ill-health - > psychological ill-health. #### 81.2. Scope of Investigation In the following sections, tangible damages to residential, commercial / industrial and public properties have been estimated resulting from flooding at the four villages. Intangible damages have not been quantified. The threshold floods at which damages may commence to infrastructure and community assets have also been estimated, mainly from site inspection and interpretation of flood level data. However, there are no data available to allow a quantitative assessment of damages to be made to this category. #### **B1.3. Terminology** Definitions of the terms used in this Appendix are presented in Chapter B8 which also summarises the value of Tangible Flood Damages. #### **B2.** DESCRIPTION OF APPROACH The damage caused by a flood to a particular property is a function of the depth of inundation above floor level and the value of the property and its contents. The warning time available for residents to take action to lift property above floor level also influences damages actually experienced. A spreadsheet model which has been developed by OEH for estimating residential damages and an in house spreadsheet model which has been developed for previous investigations of this nature for estimating commercial, industrial and public building damages were used to estimate damages on a property by property basis according to the type of development, the location of the property and the depth of inundation. Using the results of the *Flood Studies*, a peak flood elevation for each event was interpolated at each property. The interpolated property flood levels were input to the spreadsheet models which also contained property characteristics and depth-damage relationships. The depth of above-floor inundation was computed as the difference between the interpolated flood level and the floor elevation at each property. The elevations of building floors were assessed by adding the height of floor above a representative natural surface within the allotment (as estimated by visual inspection) to the natural surface elevation determined from LiDAR survey used in the *Flood Studies*. The type of structure and potential for property damage were also assessed during the visual inspection. The depth-damage curves for residential damages were determined using procedures described in *Guideline No. 4*. Damage curves for other categories of development (commercial and industrial, public buildings) were derived from previous floodplain management investigations. Damages to the non-residential sector depend on the nature of the enterprise, the depth of inundation over the floor area and the time available for owners to take action to mitigate losses to contents. A spreadsheet model was used which was similar to the residential model in terms of estimation of depths of inundation, but used typical unit damage data which had been adopted in similar studies in NSW in recent years. It should be understood that this approach is not intended to identify individual properties liable to flood damages and the value of damages in individual properties, even though it appears to be capable of doing so. The reason for this caveat lies in the various assumptions used in the procedure, the main ones being: - > the assumption that computed water levels and topographic data used to define flood extents are exact and without any error; - the assumption that the water levels as computed by the hydraulic model are not subject to localised influences; - the estimation of property floor levels by visual inspection rather than by formal field survey; - the use of "average" stage-damage relationships, rather than a unique relationship for each property; - ➤ the uncertainties associated with assessing appropriate factors to convert potential damages to actual flood damages experienced for each property after residents have taken action to mitigate damages to contents. FVFRMS_V1_App8_[Rev 1.2].docx November 2016 Rev. 1.2 Page B-2 The consequence of these assumptions is that some individual properties may be inappropriately classified as flood liable, while others may be excluded. Nevertheless, when applied over a broad area these effects would tend to cancel, and the resulting estimates of overall damages, would be expected to be reasonably accurate. For the above reasons, the information contained in the spreadsheets used to prepare the estimates of flood damages for the catchments should not be used to provide information on the depths of above-floor inundation of individual properties. #### **B3. SOURCES OF DATA** #### B3.1. General To estimate Average Annual Flood Damages for a specific area it is necessary to estimate the damages for several floods of different magnitudes, i.e. of different frequencies, and then to integrate the area beneath the damage – frequency curve computed over the whole range of frequencies up to the PMF. To do this it is necessary to have data on the damages sustained by all types of property over the likely range of inundation. There are several ways of doing this: - ➤ The ideal way would be to conduct specific damage surveys in the aftermath of a range of floods, preferably immediately after each. An example approaching this ideal is the case of Nyngan where surveys were conducted in May 1990 following the disastrous flood of a month earlier (DWR, 1990). This approach would not be practicable at the four villages, as the most recent occurrence of major flooding in the drainage system occurred over five years ago in December 2010. - ➤ The second best way is for experienced loss adjusters to conduct a survey to estimate likely losses that would arise due to various depths of inundation. This approach is used from time to time, but it can add significantly to the cost of a floodplain management study (LMJ, 1985). It was not used for the present investigation. - ➤ The third way is to use generalised data such as that published by CRES (Centre for Resource & Economic Studies, Canberra) and used in the Floodplain Management Study for Forbes (SKM, 1994). These kinds of data are considered to be suitable for generalised studies, such as broad regional studies. They are not considered to be suitable for use in specific areas, unless none of the other approaches can be satisfactorily applied. - The fourth way is to adapt or transpose, data from other flood liable areas. This was the approach used for the present study. As mentioned, the *Guideline No 4* procedure was adopted for the assessment of residential damages. The approach was based on data collected following major flooding in Katherine in 1998, with adjustments to account for changes in values due to inflation, and after taking into account the nature of development and flooding patterns in the study area. The data collected during site inspection in the flood liable areas assisted in providing the necessary adjustments. Commercial and industrial damages were assessed via reference to recent floodplain management investigations of a similar nature to the present study (L&A, 2015). #### **B3.2.** Property Data The properties were divided into three categories: residential, commercial, industrial and public buildings. For residential properties, the data used in the
damages estimation included: - > the location/address of each property - > an assessment of the type of structure - > natural surface level - > floor level Page B-4 Lyall & Associates FVFRMS_V1_AppB_[Rev 1.2].docx November 2016 Rev. 1.2 For commercial and industrial properties, the required data included: - > the location of each property - > the nature of each enterprise - > an estimation of the floor area - natural surface level - > floor level The property descriptions were used to classify the commercial developments into categories (i.e. high, medium or low value properties) which relate to the magnitude of likely flood damages. A similar approach was adopted for compiling data on public buildings. Properties lying along the major overland flowpaths were included in the database. The total number of residential properties, commercial, industrial and public buildings is shown in **Table 83.1**. TABLE 3.1 NUMBER OF PROPERTIES INCLUDED IN DAMAGES DATABASE | Village | Number of Properties | | | | | | |-----------|----------------------|---------------------------|--------|-------|--|--| | | Residential | Commercial
/Industrial | Public | Total | | | | Crookwell | 430 | 26 | 5 | 461 | | | | Gunning | 95 | 22 | 13 | 130 | | | | Collector | 40 | 6 | 5 | 51 | | | | Taralga | 86 | 16 | 6 | 108 | | | #### B3.3. Flood Levels Used in the Analysis Damages were computed for the design flood levels determined from the hydraulic models set up for the *Flood Studies*. The design levels assume that the drainage system is operating at optimum capacity. They do not allow for any increase in levels resulting from wave action, debris build-ups in the channels which may cause a partial blockage of culverts and which may result in conversions of flow from the supercritical to the subcritical flow regime, as well as other local hydraulic effects. These factors are usually taken into account by adding a factor of safety (freeboard) to the "nominal" flood level when assessing the "level of protection" against flooding of a particular property. Freeboard could also include an allowance for the future effects of climate change. #### **B4. RESIDENTIAL DAMAGES** #### **B4.1.** Damage Functions The procedures identified in *Guideline No 4* allow for the preparation of a depth versus damage relationship which incorporates structural damage to the building, damage to internals and contents, external damages and clean-up costs. In addition, there is the facility for including allowance for accommodation costs and loss of rent. Separate curves are computed for three residential categories: - > Single storey slab on ground construction - > Single storey elevated floor - > Two storey residence The level of flood awareness and available warning time are taken into account by factors which are used to reduce "potential" damages to contents to "actual" damages. "Potential" damages represent losses likely to be experienced if no action were taken by residents to mitigate impacts. A reduction in the potential damages to "actual" damages is usually made to allow for property evacuation and raising valuables above floor level, which would reduce the damages actually experienced. The ability of residents to take action to reduce flood losses is mainly limited to reductions in damages to contents, as damages to the structure and clean-up costs are not usually capable of significant mitigation. The reduction in damages to contents is site specific, being dependent on a number of factors related to the time of rise of floodwaters, the recent flood history and flood awareness of residents and emergency planning by the various Government Agencies (BoM and NSW SES). Flooding on the main streams and the overland flow paths is "flash flooding" in nature with a time of rise of floodwaters on the main arms limited between 2 hours (Taralga) and 6 hours (Collector) and to less than an hour in the urban areas subject to MOF. The duration of peak flooding is similarly quite short. There is no catchment specific flood warning system operated by the BoM and no specific response procedures developed by NSW SES, which has to date not completed the *Local Flood Plan* for the townships. Consequently, there would be very limited time in advance of a flood event in which to warn residents and for them to take action to mitigate flood losses. Provided adequate warning were available, house contents may be raised above floor level to about 0.9 m, which corresponds with the height of a typical table/bench height. The spreadsheet provides two factors for assessing damages to contents, one for above and one for below the typical bench height. The reduction in damages is also dependent on the likely duration of inundation of contents, which would be limited to no more than an hour for most flooded properties. Table B4.1 over shows total flood damages estimated for the three classes of residential property using the procedures identified in *Guideline No. 4*, for typical depths of above-floor inundation of 0.1 m and 0.5 m (The maximum depth of above-floor inundation in the four villages is about 300 mm at the 100 year ARI level of flooding at Crookwell). A typical ground floor area of 200 m² was adopted for the assessment. The values in Table B4.1 allow for damages to buildings and contents, as well as external damages and provision for alternative accommodation. FVFRMS_V1_AppB_[Rev 1.2].docx November 2016 Rev. 1.2 Page B-6 ### TABLE B4.1 DAMAGES TO RESIDENTIAL PROPERTIES | Type of Residential Construction | 0.1 m Depth of Inundation Above
Floor Level | 0.5 m Depth of Inundation Above
Floor Level | |----------------------------------|--|--| | Single Storey Slab on Ground | \$56,177 | \$68,157 | | Single Storey High Set | \$63,034 | \$76,939 | | Double Storey | \$39,324 | \$47,710 | Note: These values allow for damages to buildings and contents, as well as external damages and provision for alternative accommodation. #### **B4.2.** Total Residential Damages Table B4.2 summarises residential damages for the range of floods in the four villages. The damage estimates were carried out for floods between the 20 year ARI and the PMF, which were modelled hydraulically in the *Flood Studies*. The main damages centre at Crookwell are located at the Goulburn Street crossing of the Cullen Street Overland Flow Path. However, there are a number of residential dwellings that are located on the various overland flow paths which run through the urbanised parts of the village that would experience shallow above-floor inundation during a 100 year ARI storm event. Whilst there is a significant increase in the number of dwellings subject to above-floor inundation and total damages between the 100 year ARI and the PMF, the increase for storms slightly larger than the 100 year ARI (represented by the 200 and 500 year ARI) are only minor. The residential damages in Gunning at the 100 year ARI are primarily located upstream of Yass Street, between Meadow Creek and Warrataw Street. Note that the Gunning Motel is located in this area and in order to assess the damages that would be experienced in this property, the 25 individual motel rooms were grouped together and represented by 12 residential dwellings in the damages spreadsheet. Table B4.2 shows that for a flood slightly larger than the 100 year ARI (represented by the 500 year ARI), flood damages in residential development increases by a factor of 2. The increase in flood damages is a function of a major breakout of flow which occurs on the left bank of Meadow Creek adjacent to Cullen Street. This finding indicated that there would be merit in developing flood management measures which are aimed at reducing flood damages (and the flood risk) in this area for floods slightly larger than the 100 year ARI. Flooding has minimal impact on residential development in Collector, except for in the PMF event, where high flows along the George Street Overland Flow Path surcharge the system and flow through a number of properties. While flooding has a minor impact on residential development at Taralga, the aged care facility which is located on Bunnaby Street is one of the two residential dwellings which will experience above-floor inundation during a 100 year ARI storm event. FVFRMS_V1_AppB_{Rev 1.2}.docx November 2016 Rev. 1.2 Page B-7 ### TABLE B4.2 RESIDENTIAL FLOOD DAMAGES | | Design | Number o | f Properties | Damages | |-----------|----------------|-------------------|--------------|--------------| | Village | Flood
Event | Flood
Affected | Above Floor | (\$ Million) | | | 20 year ARI | 74 | 8 | 1.08 | | Ì | 100 year ARI | 103 | 14 | 1.69 | | Crookwell | 200 year ARI | 108 | 16 | 1.82 | | | 500 year ARI | 119 | 19 | 2.12 | | | PMF | 279 | 132 | 11.41 | | | 20 year ARI | 20 | 1 | 0.25 | | | 100 year ARI | 34 | 7 | 0.75 | | Gunning | 200 year ARI | 36 | 7 | 0,81 | | | 500 year ARI | 45 | 17 | 1.46 | | | PMF | 74 | 55 | 7.22 | | | 20 year ARI | 0 | 0 | 0.00 | | | 100 year ARI | 4 | 0 | 0.05 | | Collector | 200 year ARI | 6 | 2 | 0.16 | | | 500 year ARI | 6 | 2 | 0.18 | | | PMF | 26 | 20 | 1.58 | | | 20 year ARI | 12 | 1 | 0.16 | | | 100 year ARI | 14 | 2 | 0.24 | | Taralga | 200 year ARI | 14 | 3 | 0.27 | | | 500 year ARI | 15 | 3 | 0.35 | | | PMF | 50 | 15 | 1.32 | #### B5. **COMMERCIAL / INDUSTRIAL DAMAGES** #### **B5.1.** Direct Commercial / Industrial Damages The method used to calculate damages requires each property to be categorised in terms of the following: - > damage category - floor area > floor elevation The damage category assigned to each enterprise may vary between "low", "medium" or "high", depending on the nature of the enterprise and the likely effects of flooding. Damages also depend on the floor area. It has recently been recognised following the 1998 flood in Katherine that previous investigations using stage-damage curves
contained in proprietary software tends to seriously underestimate true damage costs Guideline No. 4. OEH are currently researching appropriate damage functions which could be adopted in the estimation of commercial and industrial categories as they have already done with residential damages. However, these data were not available for the present study. On the basis of previous investigations the following typical damage rates are considered appropriate for potential external and internal damages and clean-up costs for both commercial and industrial properties. They are indexed to a depth of inundation of 2 metres. At floor level and 1.2 m inundation, zero and 70% of these values respectively were assumed to occur: | Low value enterprise | \$280/m ² | (e.g. Commercial: small shops, cafes, joinery, public halls. Industrial: auto workshop with concrete floor and minimal goods at floor level, Council or Government Depots, storage areas.) | |-------------------------|----------------------|--| | Medium value enterprise | \$420/m ² | (e.g. Commercial: food shops, hardware, banks, professional offices, retail enterprises, with furniture/fixtures at floor level which would suffer damage if inundated. Industrial: warehouses, equipment hire.) | | High value enterprise | \$650/m ² | (e.g. Commercial: electrical shops, clothing stores, bookshops, newsagents, restaurants, schools, showrooms and retailers with goods and furniture, or other high value items at ground or lower floor level. Industrial: service stations, vehicle showrooms, smash repairs.) | The factor for converting potential to actual damages depends on a range of variables such as the available warning time, flood awareness and the depth of inundation. Given sufficient warning time, a well prepared business will be able to temporarity lift property above floor level. However, unless property is actually moved to flood free areas, floods which result in a large depth of inundation, will cause considerable damage to stock and contents. FVFRMS_V1_AppB_[Rev 1.2].docx November 2016 Rev. 1.2 Page 8-9 For the present study, the above potential damages were converted to actual damages using a multiplier which ranged between 0.5 and 0.8 depending on the depth of inundation above the floor. As shown on Figures B8.1 to B8.4, the maximum depth of above-floor inundation experienced at the 100 year ARI level of flooding for commercial and industrial property is about 500 mm at Crookwell. At these relatively shallow depths it would be expected that owners may be able to take significant action to mitigate damages even allowing for the flash flooding nature of inundation. Consequently, the multiplier of 0.5 was adopted to convert potential to actual damages for depths of inundation up to 1.2 m, increasing to 0.8 for greater depths. #### **B5.2.** Indirect Commercial and Industrial Damages Indirect commercial and industrial damages comprise costs of removal of goods and storage, loss of trading profit and loss of business confidence. Disruption to trade takes the following forms: - > The loss through isolation at the time of the flood when water is in the business premises or separating clients and customers. The total loss of trade is influenced by the opportunity for trade to divert to an alternative source. There may be significant local loss but due to the trade transfer this may be considerably reduced at the regional or state level. - > In the case of major flooding, a downtum in business can occur within the flood affected region due to the cancellation of contracts and loss of business confidence. This is in addition to the actual loss of trading caused by closure of the business by flooding. Loss of trading profit is a difficult value to assess and the magnitude of damages can vary depending on whether the assessment is made at the local, regional or national level. Differences between regional and national economic effects arise because of transfers between the sectors, such as taxes, and subsidies such as flood relief returned to the region. Some investigations have lumped this loss with indirect damages and have adopted total damage as a percentage of the direct damage. In other cases, loss of profit has been related to the gross margin of the business, i.e. turnover less average wages. The former approach has been adopted in this present study. Indirect damages have been taken as 50% of direct actual damages. A clean-up cost of \$15/m² of floor area of each flooded property was also included. #### **B5.3.** Total Commercial and Industrial Damages Table B5.1 over summarises estimated commercial and industrial damages in the four villages. The commercial damages in Crookwell are located at the Goulburn Street crossing of the Cullen Street Overland Flow Path. As shown in **Table B5.1**, there is a significant increase in the commercial flood damages between the 100 year ARI and the PMF. This occurs as the depths of above-floor inundation in the damage centre are up to 2.0 m higher for the PMF event. While there are a limited number of commercial properties subject to shallow above-floor inundation at the 100 year ARI in Gunning, backwater effects which would be imposed by the Main Southern Railway embankment during a PMF event results in a significant increase in the depth and extent of inundation, which in turn leads to a significant increase in flood damages. There are only minor commercial damages experienced at Collector and Taralga. FVFRMS_V1_AppB_[Rev 1.2].docx November 2016 Rev. 1.2 Page B-10 ### TABLE B5.1 COMMERCIAL AND INDUSTRIAL FLOOD DAMAGES | 5.000 | Design | Number o | f Properties | Damages | |-----------|----------------|-------------------|--------------|--------------| | Village | Flood
Event | Flood
Affected | Above Floor | (\$ Million) | | | 20 year ARI | 8 | 6 | 0.10 | | 1 | 100 year ARI | 9 | 7 | 0.15 | | Crookwell | 200 year ARI | 10 | 8 | 0.18 | | | 500 year ARI | 10 | 9 | 0.22 | | | PMF | 22 | 22 | 3.48 | | | 20 year ARI | 5 | 1 | < 0.01 | | | 100 year ARI | 11 | 8 | 0.06 | | Gunning | 200 year ARI | 14 | 11 | 0.18 | | | 500 year ARI | 16 | 13 | 0.32 | | | PMF | 20 | 20 | 6.39 | | | 20 year ARI | 0 | 0 | 0.00 | | | 100 year ARI | 1-1 | 1 | 0.03 | | Collector | 200 year ARI | 1 | 1 | 0.03 | | | 500 year ARI | 1 | 1 | 0.04 | | | PMF | 2 | 1 | 0,38 | | | 20 year ARI | 0 | 0 | 0.00 | | | 100 year ARI | 2 | 1 | < 0.01 | | Taraiga | 200 year ARI | 2 | 1 | < 0.01 | | | 500 year ARI | 3 | 1 | < 0.01 | | | PMF | 11 | 5 | 0.05 | #### **B6. DAMAGES TO PUBLIC BUILDINGS** #### **B6.1.** Direct Damages - Public Buildings Included under this heading are government buildings, churches, swimming pools and parks. Damages were estimated individually on an area basis according to the perceived value of the property. Potential internal damages were indexed to a depth of above-floor inundation of 2 m as shown below. At floor level and 1.2 m depth of inundation, zero and 70% of these values respectively were assumed to occur. Low value \$280/m² Medium value \$420/m² (e.g. council buildings, SES HQ, fire station) High value \$650/m² (e.g. schools) These values were obtained from the Nyngan Study (DWR, 1990) as well as commercial data presented in the Forbes Water Studies report (WS, 1992). External and structural damages were taken as 4 and 10% of internal damages respectively. #### 86.2. B6.2 Indirect Damages - Public Buildings A value of \$15/m² was adopted for the clean-up of each property. This value is based on results presented in the Nyngan Study and adjusted for inflation. Total "welfare and disaster" relief costs were assessed as 50% of the actual direct costs. #### B6.3. B6.3 Total Damages - Public Buildings Table B6.1 over summarises estimated damages to public buildings in each of the four villages. Generally there is very little damage to public property as a result of flooding in the four urban centres. ### TABLE B6.1 PUBLIC FLOOD DAMAGES | 3 Am | Design | Number o | f Properties | Damages | | |-----------|----------------|-------------------|--------------|--------------|--| | Village | Flood
Event | Flood
Affected | Above Floor | (\$ Militon) | | | | 20 year ARI | 2 | 2 | 0.07 | | | | 100 year ARt | 2 | 2 | 0.07 | | | Crookwell | 200 year ARI | 2 | 2 | 0.07 | | | | 500 year ARI | 2 | 2 | 0.07 | | | | PMF | 4 | 4 | 0.15 | | | | 20 year ARI | 2 | 1 | < 0.01 | | | | 100 year ARI | 5 | 3 | 0.01 | | | Gunning | 200 year ARI | 5 | 3 | 0.01 | | | | 500 year ARI | 5 | 3 | 0.01 | | | | PMF | 12 | 12 | 4.60 | | | | 20 year ARI | a | 0 | 0.00 | | | 1 | 100 year ARI | 0 | 0 | 0.00 | | | Collector | 200 year ARI | 0 | 0 | 0.00 | | | | 500 year ARI | 1 | 1 | < 0.01 | | | | PMF | 1 | 1 | 0.04 | | | | 20 year ARI | 1 | 1 | < 0.01 | | | | 100 year ARI | 1 | 1 | 0.01 | | | Taralga | 200 year ARI | 1 | 1 | 0.01 | | | | 500 year ARI | 1 | 1 | 0.01 | | | | PMF | 0.04 | 0.04 | 0.04 | | #### B7. DAMAGES TO INFRASTUCTURE AND COMMUNITY ASSETS No data are available on damages experienced during historic flood events. However, a qualitative matrix of the effects of flooding on these categories is presented in Table 87.1. TABLE B7.1 QUALITATIVE EFFECTS OF FLOODING ON INFRASTRUCTURE AND COMMUNITY ASSETS | | Damage Sector | Design Flood Event | | | | | |-----------|-------------------|--------------------|---------------------------------------|--------------|-----|--| | Village | | 20 year ARI | 100 year ARI | 200 year ARI | PMF | | | Crookwell | Electricity | 0 | 0 | 0 | 0 | | | | Telephone | 0 | 0 | 0 | 0 | | | | Roads | х | х | х | Х | | | | Bridges/Weirs | х | х | × | Х | | | | Sewerage | х | х | x | Х | | | | Water Supply | 0 | 0 | 0 | 0 | | | | Parks and Gardens | Х | × | х | Х | | | Gunning
 Electricity | 0 | 0 | 0 | 0 | | | | Telephone | 0 | 0 | 0 | Х | | | | Roads | 0 | × | × | Х | | | | Bridges/Weirs | х | Х | × | Х | | | | Sewerage | 0 | 0 | 0 | Х | | | | Water Supply | х | х | х | Х | | | | Parks and Gardens | х | х | X | Х | | | | Electricity | 0 | 0 | × | Х | | | 1 | Telephone | 0 | 0 | 0 | 0 | | | - 1 | Roads | х | O O O O O O O O O O O O O O O O O O O | х | Х | | | Collector | Bridges/Weirs | 0 | 0 | 0 | Х | | | Collector | Sewerage | 0 | 0 | 0 | 0 | | | | Water Supply | × | Х | X | Х | | | | Parks and Gardens | х | х | х | Х | | | Taralga | Electricity | 0 | 0 | 0 | 0 | | | | Telephone | 0 | 0 | 0 | 0 | | | | Roads | 0 | Х | Х | Х | | | | Bridges/Weirs | 0 | Х | Х | х | | | | Sewerage | 0 | 0 | 0 | 0 | | | | Water Supply | 0 | 0 | 0 | 0 | | | | Parks and Gardens | х | Х | х | × | | Notes: O = No significant damages likely to be incurred. X = Some damages likely to be incurred. FVFRMS_V1_AppB_[Rev 1.2].docx November 2016 Rev. 1.2 Page B-14 #### B8. SUMMARY OF TANGIBLE DAMAGES #### 88.1. Tangible Damages Floods have been computed for a range of flood frequencies from 20 year ARI up to the PMF. For the purposes of assessing damages, the 2 year ARI was adopted as the "threshold" flood at which damages commence in the drainage systems of each village. From Table B8.1, considerable flood damages would be expected at Crookwell, followed by Gunning for the 100 year ARI flood event. Collector and Taralga would only be expected to suffer minor flood damages for a flood of similar magnitude. TABLE B8.1 TOTAL FLOOD DAMAGES \$ MILLION | Village | Design
Flood
Event | Residential | Commercial/
industrial | Public | Total | |-----------|--------------------------|---|------------------------------|--|-------| | | 20 year ARI | 1.08 | 0.10 | 0.07 | 1.25 | | Crookwell | 100 year ARI | 1.69 | 0.15 | 0.07 | 1.91 | | | 200 year ARI | 1.82 | 0.18 | 0.07 | 2.07 | | | 500 year ARI | 2.12 | 0.22 | 0.07 | 2.41 | | | PMF | 11.41 | 3.48 | 0.15 | 15.03 | | | 20 year ARI | 0.25 | 0.10
0.15
0.18
0.22 | < 0.01 | 0.25 | | Gunning | 100 year ARI | 0.75 | 0.06 | 0.01 | 0.82 | | | 200 year ARI | 0.81 | 0.18 | 0.01 | 0.99 | | | 500 year ARI | 1.46 | 0.32 | 0.01 | 1.80 | | | PMF | 7.22 | 6.39 | < 0.01 0.01 0.01 0.01 4.60 0.00 0.00 0.00 < 0.00 | 18.20 | | | 20 year ARI | 0.00 | 0.00 | 0.00 | 0.00 | | | 100 year ARI | 0.05 | Industrial | 0.00 | 0.07 | | Collector | 200 year ARI | 0.15 | | 0.00 | 0.17 | | | 500 year ARI | 0.18 | 0.04 | < 0.01 | 0.22 | | | PMF | 1.58 | 0.38 | 0.04 | 1.99 | | | 20 year ARI | 1.46 0.32 7.22 6.39 0.00 0.00 0.05 0.03 0.15 0.03 0.18 0.04 1.58 0.38 0.16 0.00 0.24 < 0.01 | 0.00 | 0.16 | | | | 100 year ARI | 0.24 | < 0.01 | 0.01 | 0.25 | | Taralga | 200 year ARI | 0.27 | < 0.01 | 0.01 | 0.28 | | | 500 year ARI | 0.35 | < 0.01 | 0.01 | 0.36 | | | PMF | 1.32 | 0.05 | 0.04 | 1.40 | FVFRMS_V1_AppB_[Rev 1.2].docx November 2016 Rev. 1.2 Page B-15 Figure B8.1 to B8.4 show the damage-frequency curves and cumulative distribution of above-floor depths of inundation at the 100 year ARI flood level for residential, commercial and industrial and public buildings in each village. #### **B8.2.** Definition of Terms Average Annual Damages (also termed "expected damages") are determined by integrating the area under the damage-frequency curve. They represent the time stream of annual damages, which would be expected to occur on a year by year basis over a long duration. Using an appropriate discount rate, average annual damages may be expressed as an equivalent "Present Worth Value" of damages and used in the economic analysis of potential flood management measures. A flood management scheme which has a design 100 year ARI level of protection, by definition, will eliminate damages up to this level of flooding. If the scheme has no mitigating effect on larger floods, then these damages represent the benefits of the scheme expressed on an average annual basis and converted to the *Present Worth Value* via the discount rate. Under current NSW Treasury guidelines, economic analyses are carried out assuming a 20 year economic life for projects and discount rates of 7% pa. (best estimate) and 10% and 4% pa. (sensitivity analyses). #### **B8.3.** Average Annual Damages The average annual damages in each village for all flood events up to the PMF are shown below in **Table B8.2** over the page. Note that values have been quoted to three decimal places to highlight the relatively small recurring damages in Collector and Taralga. #### 88.4. Present Worth of Damages at the Four Villages The *Present Worth Values* of damages likely to be experienced in each of the Four Villages for all flood events up to the 100 year ARI and PMF, a 20 year economic life and discount rates of 4, 7 and 10 per cent are shown in **Table B8.3** on page B-18. For a discount rate of 7% pa, the *Present Worth Value* of damages for all flood events up to the 100 year ARI flood at Crookwell, Gunning, Collector and Taralga is about \$3.64 Million, \$0.83 Million, \$0.01 Million and \$0.48 Million, respectively for a 20 year economic life. Therefore one or more schemes costing up to these amounts could be economically justified if they eliminated damages in each village for all flood events in the village up to this level. While schemes costing more than these values would have a benefit/cost ratio less than 1, they may still be justified according to a multi-objective approach which considers other criteria in addition to economic feasibility. Flood management measures are considered on a multi-objective basis in Chapter 4 of the Main Report. FVFRMS_V1_AppB_[Rev 1.2].docx November 2016 Rev. 1.2 Page **B-16** # TABLE B8.2 AVERAGE ANNUAL DAMAGES⁽¹⁾ \$ MILLION | Village | Design
Flood
Event | Residential | Commercial/
Industrial | Public | Total | |-----------|--------------------------|-------------|---|--------|-------| | | 20 year ARI | 0.244 | 0.021 | 0.016 | 0.281 | | Crookwell | 100 year ARI | 0.299 | 0.026 | 0.019 | 0.344 | | | 200 year ARI | 0.308 | 0.027 | 0.019 | 0.354 | | | 500 year ARI | 0.314 | 0.028 | 0.019 | 0.361 | | | PMF | 0.327 | 0.027 0.019 0.028 0.019 0.031 0.019 0.001 0.000 0.002 0.004 0.003 0.004 0.003 0.004 0.009 0.000 0.001 0.000 0.001 0.000 0.001 0.000 0.001 0.000 | 0.019 | 0.377 | | | 20 year ARI | 0.056 | 0.001 | 0.000 | 0.057 | | Gunning | 100 year ARI | 0.076 | 0.002 | 0.001 | 0.078 | | | 200 year ARI | 0.080 | 0.003 | 0.001 | 0.083 | | | 500 year ARi | 0.083 | 0.003 | 0.001 | 0.087 | | | PMF | 0.091 | 0.009 | 0.004 | 0.184 | | | 20 year ARi | 0.000 | 0.000 | 0.000 | 0.000 | | | 100 year ARI | 0.001 | 0.001 | 0.000 | 0.001 | | Collector | 200 year ARI | 0.001 | 0.001 | 0.000 | 0.002 | | | 500 year ARI | 0.002 | 0.001 | 0.000 | 0.003 | | | PMF | 0.004 | 0.027
0.028
0.031
0.001
0.002
0.003
0.003
0.009
0.000
0.001
0.001
0.001 | 0.000 | 0.005 | | | 20 year ARI | 0.036 | 0.000 | 0.001 | 0.037 | | Taraiga | 100 year ARI | 0.044 | 0.000 | 0.001 | 0.045 | | | 200 year ARI | 0.045 | 0.000 | 0.001 | 0.046 | | | 500 year ARI | 0.046 | 0.000 | 0.001 | 0.047 | | | PMF | 0.048 | 0.000 | 0.001 | 0.049 | ^{1.} Values quoted to three decimal places for comparative purposes only. # TABLE B8.3 PRESENT WORTH DAMAGES \$ MILLION | Village | Discount Rate
(%) | Ali Floods Up to
100 year ARI | All Floods Up to PMI | |-----------|----------------------|----------------------------------|----------------------| | Crookwali | 4 | 4.67 | 5.13 | | | 7 | 3.64 | 4.00 | | | 10 | 2.93 | 3.21 | | Gunning | 4 | 1.06 | 1.44 | | | 7 | 0.83 | 1,12 | | | 10 | 0.67 | 0.90 | | | 4 | 0.02 | 0.06 | | Collector | 7 | 0.01 | 0.05 | | | 10 | 0.01 | 0.04 | | Taraiga | 4 | 0.61 | 0.66 | | | 7 | 0.48 | 0.52 | | | 10 | 0.38 | 0.42 | #### **B9. REFERENCES** DECC (Department of Environment and Climate Change, NSW) (2007) "Floodplain Management Guideline No 4. Residential Flood Damages". DWR (Department of Water Resources, NSW) (1990) "Nyngan April 1990 Flood Investigation". L&A (Lyall and Associates Consulting Water Engineers) (2015) "The Village of Young Floodplain Risk Management Study and Plan". LMJ (Lyall, Macoun and Joy, Willing and Partners Pty Ltd) (1985) "Camden Floodplain Management Study". SKM (Sinclair Knight Merz) (1994) "Forbes Floodplain Management Report and Draft Floodplain Management Plan, Volume 1". WS (Water Studies) (1986) "The Sydney Floods of August 1986", Volume I Residential Flood Damage Survey, Report prepared for CRCE Water Studies Pty Ltd for the NSW PWD. WS (Water Studies) (1992) "Forbes Flood Damage Survey, August 1990 Flood". #### **APPENDIX C** ## ASSESSMENT OF POTENTIAL FLOOD MODIFICATION MEASURES #### **TABLE OF CONTENTS** | | | Page No | |-------|-------|--| | C1. | INTRO | DUCTIONC-1 | | C2. | TECH | NICAL REQUIREMENTS | | | C2.1 | Stream Clearing | | | C2.2 | Channel Improvements C-2 | | | C2.3 | Detention Basins | | | C2.4 | Hydraulic Structure Upgrades | | | C2.5 | Levees | | C3. | CROC | KWELL | | | C3.1 | General | | | C3.2 | Crookwell River and Kiamma Creek Stream Clearing | | | C3.3 | Local/Trunk Drainage Upgrades | | | | C3.3.1 Goulburn Street Local Drainage Upgrade | | | | C3.3.2 King Road Local Drainage Upgrade | | | | C3.3.3 Goulburn Street Trunk Drainage Upgrade | | | C3.4 | Detention Basins on Cullen Street Overland Flow Path | | | | C3.4.1 General | | | | C3.4.2 CR1 - Cullen Street Detention Basin | | | | C3.4.3 CR2 - Grange Road Detention Basin | | | | C3.4.4 CR1 and CR2 - Combined Detention Basin Strategy | | | | C3.4.5 Saleyards Road Detention Basin | | C4. | GUNN | ingC-10 | | | C4.1 | General | | | C4.2 | Meadow Creek Stream Clearing
 | | C4.3 | Meadow Creek Channel Works | | | C4.4 | Biala Street Local Drainage Upgrade | | | C4.5 | Main Southern Railway Upgrade | | | C4.6 | Cullavin Street Levee | | | | C4.6.2 GU2 - Cullavin Street Levee Option 1 | | | | C4.6.2 GU3 - Cullavin Street Levee Option 2 | | | C4.7 | Economic Analysis | | C2. T | COLL | ECTOR | | | Ç5.1 | General | | | C5.2 | George Street Drainage Upgrade | | | C5.3 | Collector Bypass Channel | | | C5.4 | Recommendations | | C6. | TARA | LGA | | | C6.1 | General | | | C6.2 | Orchard Street Local Drainage Upgrade C-15 | ### FIGURES (BOUND IN VOLUME 2) | C3.1 | Impact of Stream Clearing on Peak Flood Levels at Crookwell - 100 year ARI | |------|--| | C3.2 | Impact of King Road Drainage Upgrade on Peak Flood Levels at Crookwell | | C3.3 | Impact of Goulburn Street Trunk Drainage Upgrade on Peak Flood Levels at Crookwell - | | | 100 year ARI | | C3.4 | Impact of Cullen Street Detention Basin on Peak Flood Levels at Crookwell | | C3.5 | Impact of Grange Road Detention Basin on Peak Flood Levels at Crookwell | | C3.6 | Impact of Combined Detention Basin Strategy on Peak Flood Levels at Crookwell | | C3.7 | Impact of Combined Detention Basin Strategy and Goulburn Street Trunk Drainage Upgrade | | | on Peak Flood Levels at Crookwell – 100 year ARI | | C3.8 | Impact of Saleyards Road Detention Basin on Peak Flood Levels at Crookwell | | C4.1 | Impact of Biala Street Drainage Upgrade on Peak Flood Levels at Gunning | | C4.2 | Impact of Cullavin Street Levee Option 1 on Peak Flood Levels at Gunning | | C4.3 | Impact of Cullavin Street Levee Option 2 on Peak Flood Levels at Gunning | | | | | C5.1 | Impact of George Street Drainage Upgrade on Peak Flood Levels at Collector | | C5.2 | Impact of Collector Bypass Channel on Peak Flood Levels at Collector | | 00.4 | Import of Orehard Street Prainage Hograde on Peak Flood Levels at Taralda | #### C1. INTRODUCTION This Appendix presents the findings of an investigation which was undertaken into the merits of implementing a range of potential flood modification measures in the four villages. #### C2. TECHNICAL REQUIREMENTS #### C2.1 Stream Clearing Management programs in urban creeks typically involve maintenance of grassed inverts and batters, the removal of sediment and the clearance of flood debris after significant flow events. Clearance of debris within the stream corridor reduces the potential for future capture by the flow and blockage of culverts. In the case of natural streams, management measures could also include the removal of woody weeds and willows and revegetation of the creek corridors with native species. These measures usually have a beneficial, but limited, impact on the conveyance capacity of the streams. They do not fulfil a flood mitigation role, but improve the aesthetics of the waterway as well as provide water quality benefits and reduce the debris load likely to be experienced during flooding. Stream clearing may also reduce the risk of woody debris build up in the creek system that results in blockage of major hydraulic structures. #### **C2.2** Channel Improvements The hydraulic capacity of a stream may be increased by widening, deepening or straightening the channel and clearing the banks of obstructions. The scope of such improvements can vary from: schemes which do not increase the waterway area but ensure the creek is maintained in a condition which maximises hydraulic capacity; to major channel excavations. Careful attention to design is required to ensure stability of the channel is maintained and scour or sediment build-up is minimised. The potential for large scale improvements to increase downstream flood peaks also needs to be considered. In general, channel improvements need to be carried out over a substantial stream length to have any significant effect on flood levels. Proposals also need to conform with Government Policies in regard to retention of native vegetation, maintenance of fish habitat and other environmental considerations. Several respondents to the community questionnaire noted that an increase in the number of willow trees along the banks of the creeks had reduced the efficiency of the channel systems. However, during the December 2010 flood event, and to a lesser extent the March 2012 flood event, the creek systems continued to function at near their optimum hydraulic capacity. Consequently a formal Creek Management Scheme is not a priority measure in the main streams, at least on flood mitigation grounds. However, cleaning out the creek system, coupled with regular inspection of the major hydraulic structures may be a cost-effective measure, as it would ensure the existing drainage infrastructure functions at its hydraulic capacity. #### C2.3 Detention Basins Detention basins provide a temporary storage of floodwaters additional to that contained in the floodplain, with the objective of reducing the flood peak in downstream reaches of the drainage system. "Offline" basins, remote from the stream, with intake and outlet channels to and from the stream, are preferred over embankments constructed across the channel in order to maintain the continuity of the creek. The basin should also be located in the middle or lower reaches of the catchment, sufficiently close to the area intended to be protected, that its attenuating effects over flood peaks is not negated by downstream tributary inflows. Typically the basin should command in excess of 60 to 70 per cent of the total catchment at the urban centre to be protected. FVFRMS_V1_AppC_[Rev 1.2].doc November 2016 Rev. 1.2 Page C-2 Another requirement is that the basin be of sufficient size to store a significant percentage of runoff from the design storm. Basins attenuate the flood peak (i.e. reduce the downstream peak rate of runoff) by temporarily storing the incoming discharge hydrograph and releasing it at a controlled rate. To be effective, basins storing a minimum of 50 per cent of the volume of runoff of the incoming flood event are required. Flows up to the 100 year ARI are usually controlled by low level pipes. Larger flows are conveyed by a combination of flow through the low level outlets together with flow over an emergency spillway, usually constructed by excavating a channel and broad crested weir in the embankment. The spillway crest is usually armoured with reno-mattress or equivalent erosion resistant material to prevent scour. For optimum performance in reducing downstream flows, the design flood should be conveyed through the basin via the low level outlets without the spillway operating. To achieve this objective often requires a large storage. Small basins are quickly overwhelmed by the incoming flood waters, with the result that the level of stored water quickly rises to the level of the emergency spillway. Because the spillway is able to pass a large rate of flow, with little rise in level, the rate of outflow rapidly rises to the rate of inflow, negating the main purpose of the basin. #### C2.4 Hydraulic Structure Upgrades Upgrading hydraulic structures by increasing their waterway area has the potential to reduce the impact of flooding on existing development within the study area. However, care must be taken when assessing the merits of such upgrades as changes in flooding patterns and the removal of temporary flood storage can under certain circumstances increase downstream flood peaks. The risk of a blockage of hydraulic structures by debris also needs to be taken into consideration when determining appropriate dimensions for an upgraded structure. #### C2.5 Levees Levees are an effective means of protecting flood affected properties up to the design flood level. In designing a levee it is necessary to take account of three important factors: potential redistribution of flood flows, the requirements for the collection and disposal of internal drainage from the protected area and the consequences of overtopping the levee in floods greater than the design event. A freeboard between the design flood level and the crest level of between 0.5 and 1 m would be required, based on an assessment of site specific flooding conditions. Reinforced concrete and concrete block walls are often used in situations where there is insufficient land available for earth banks. Such walls are provided with reinforced concrete footings of sufficient width to withstand overturning during flood events. #### C3. CROOKWELL #### C3.1 General The main stream system in Crookwell comprises natural watercourses discharging from the hilly upslope areas and running through the developed part of the village with numerous road crossings of various hydraulic capacities which raise upstream flood levels and influence the pattern of flooding. The main damage centre in Crookwell is located where runoff in the Cullen Street Overland Flow Path surcharges the transverse drainage structure under Goulburn Street and flows through existing development. As a result, there are four residential and three commercial properties that would be subject to above-floor inundation in a 100 year ARI event. The majority of existing development in Crookwell is located outside the extent of Main Stream flooding. While the piped drainage system in the village is of limited capacity, with a significant portion of the local catchment runoff conveyed in a series of overland flow paths, relatively few dwellings would experience above-floor inundation in a 100 year ARI storm event. Two of the more significant overland flow paths as identified by respondents to the community consultation and in *The Village of Crookwell Flood Study* are located north of the Crookwell River at Elizabeth Street and north of Kiamma Creek at Carr Street. Flood modification measures to mitigate the impact of overland flow in these areas are assessed in Sections C3.3.2 and C3.4.5, respectively. #### C3.2 Crookwell River and
Kiamma Creek Stream Clearing As identified in Table 3.1 of the main report, it is a common perception amongst the community that the build-up of willow trees and dense vegetation in the creeks has exacerbated flooding patterns. A sensitivity analysis was therefore undertaken whereby the hydraulic roughness values in the hydraulic model were reduced in order to simulate the removal of dense vegetation from the main channels of Kiamma Creek between Harley Road and Saleyards Road and the Crookwell River between Laggan Road and the projection of Kensit Street. Figure C3.1 shows that stream clearing would only have a localised effect on peak flood levels and would therefore not reduce the severity of flooding in existing development. As the economic benefits of stream clearing would be minor, it would be difficult to justify the inclusion of this scheme in the FRMP. #### C3.3 Local/Trunk Drainage Upgrades #### C3.3.1 Goulburn Street Local Drainage Upgrade During a field inspection, a business owner advised that runoff generated by the local catchment which lies to the west of Warne Street causes flooding in his commercial property which is located on the northern side of Goulburn Street along the line of the Cullen Street Overland Flow Path. While the upgrade of the existing stormwater drainage system in Goulburn Street would reduce the frequency of nuisance flooding in the commercial property, its economic benefits (damages prevented) would be minor in comparison to the capital cost of the works. Inclusion of the upgrade works in the FRMP could therefore not be justified on economic grounds. FVFRMS_V1_AppC_[Rev 1.2].doc November 2016 Rev. 1.2 Page C-4 #### C3.3.2 King Road Local Drainage Upgrade Respondents to the community questionnaire identified that an overland flow path develops during heavy rainfall events in several residential properties that are located along Elizabeth Street. The presence of the overland flow path was confirmed by the findings of *The Village of Crookwell Flood Study*. An 18.3 ha catchment extends into the hills north of McIntosh Road and generates a peak flow of 0.6 and 1.3 m³/s during a 20 and 100 year ARI storm event, respectively. As the existing drainage system downstream of Elizabeth Street is of limited capacity, runoff discharges to the Crookwell River via an overland flow path that runs through existing residential development that is located in King Road, Parker Street and Hall Crescent A scheme (denoted Scheme CR4) was developed which would involve the construction of a channel and a series of diversion banks in the vacant lot which lies to the north of Elizabeth Street and the installation of a 500 m long length of 1050 mm diameter pipe which would run along King Road from the vacant lot to the Crookwell River floodplain. As shown on Figure C3.2, the implementation of Scheme CR4 would prevent overland flows from discharging through the affected residential properties and remove above-floor inundation in two existing dwellings. By inspection, the capital costs associated with the construction of Scheme CR4 would be significantly larger than the benefits achieved in terms of a reduction in flood damages. Inclusion of the works in the FRMP could therefore not be justified on economic grounds. #### C3.3.3 Goulburn Street Trunk Drainage Upgrade As mentioned above, the main damages centre at Crookwell is located at the Goulburn Street crossing of the Cullen Street Overland Flow Path. The existing transverse drainage structure comprises 2 off 900 mm reinforced concrete pipes (RCP's) south (upstream) of Goulburn Lane and 2 off 1200 mm high by 1200 mm wide reinforced concrete box culverts (RCBC's) on the northern (downstream) side of Goulburn Street. The transverse drainage structure discharges into a channel that runs parallel to East Street where it runs under Robertson Lane and the adjacent dis-used railway line via 2 m wide bridge openings. In order to reduce peak flood levels and hence flood damages in existing development, seven alternative upgrades to the existing trunk drainage system were investigated. Table C3.1 over the page provides details of each alternative upgrade option. As shown in Figure C3.3, whilst Options CR5.1, CR5.2, CR5.3 and CR5.4 reduce peak flood levels by more than 200 mm in existing development located on the western side of East Street, they would result in an increase in peak flood levels in an existing development that is located on the eastern side of East Street, north (downstream) of Goulburn Street. Furthermore, all four options do not completely eliminate overtopping of Goulburn Lane and hence flooding in existing development located on its downstream side. Based on this finding, it was determined that it would be more effective to upgrade the transverse drainage structure under Goulburn Street in conjunction with the provision of an upstream detention basin (or basins). Further discussion on the benefits that this approach would provide in terms of reducing the impact of flooding on existing development in the vicinity of Goulburn Street is contained in Section C3.4.4. ¹ The alignment of the culvert and at what point it transitions between the RCP's and RCBC's could not be determined as part of this investigation. It has therefore been assumed that the transition between the two is located behind the southern kerbline of Goulburn Street. ### TABLE C3.1 GOULBURN STREET TRANSVERSE DRAINAGE UPGRADE OPTIONS | Option | Description | |------------------------|--| | CR5.1 | Goulburn Street transverse drainage structure upgraded to 2 off 2700 mm wide by 900 mm high RCBC's. | | CR5.2 | Goulburn Street and Robertson Lane transverse drainage structures upgraded to 2 off 2700 mm wide by 900 mm high RCBC's. | | CR5.3 | Goulburn Street, Robertson Lane and railway transverse drainage structures upgraded to 2 off 2700 mm wide by 900 mm high RCBC's. | | CR5.4 | Goulburn Street, Robertson Lane and railway transverse drainage structures upgraded to 2 off 2700 mm wide by 900 mm high RCBC's and Goulburn Lane raised by up to 400 mm. | | CR5.5 ^(1,2) | Goulburn Street transverse drainage structure upgraded to 1 off 3000 mm wide by 900 mm high RCBC along its full length. | | CR5.6(1) | Goulburn Lane raised by up to 400 mm. | | CR5.7 ^(1,2) | Upstream reach of Goulburn Street transverse drainage structure upgraded to 1 off 3000 mm wide by 900 mm high RCBC. Existing 2 off 1200 mm wide by 1200 mm high RCBC's under Goulburn Street to be retained. Goulburn Lane raised by up to 400 mm. | - Option only viable if combined with Basins CR1 and CR2. Refer Section C3.4.4 for further discussion. - Goulburn Street culvert upgraded between headwall on upstream side of Goulburn Lane and junction pit behind southern kerbline of Goulburn Street, where it has been assumed the 2 off 900 mm RCP's transition into 2 off 1200 mm wide by 1200 mm high RCBC's. #### C3.4 Detention Basins on Cullen Street Overland Flow Path #### C3.4.1 General The construction of detention basins upstream of Goulburn Street on the Cullen Street Overland Flow Path has the potential to reduce flood damages in existing development. Two potential basin sites have been assessed as part of the present investigation: Basin CR1, which would replace the existing farm dam which is located on the upstream side of Cullen Street; and Basin CR2, which would comprise a new structure which would be constructed on the eastern (upstream) side of Grange Road along the overland flow path which runs through the Crookwell Golf Course. The stage-storage relationships of the two basins were estimated from the LiDAR survey data. For the purpose of the present investigation, the basins were sized to store runoff to a maximum depth of 2 m in a 100 year ARI event. A 0.5 m freeboard was provided between the maximum 100 year ARI water level and the crest level of the two basins, resulting in a maximum embankment height of 2.5 m. #### C3.4.2 CR1 - Cullen Street Detention Basin As discussed in Section 2.11.3 of the main report, the existing farm dam that is located on the southern (upstream) side of Cullen Street presently attenuates flood flows due to its relatively large size. However, its standard of construction is not known and there is a concern that should it fail it could result in potentially life threatening flooding conditions arising in existing development that is located along the Cullen Street Overland Flow Path. A preliminary investigation was undertaken of a basin arrangement which incorporated a 450 mm diameter low flow pipe and $37,500 \, \text{m}^3$ of temporary flood storage at spillway level. FVFRMS_V1_AppC_[Rev 1.2].doc November 2016 Rev. 1.2 Page C-6 While there is a significant reduction in peak flows immediately downstream of Basin CR1 (refer columns C and D in Table C3.2), the attenuating affects are greatly reduced by downstream lateral inflows. As a result, only minor reductions in peak flood levels are achieved downstream of Wade Street (refer Figure C3.4), with above-floor inundation only removed from one dwelling in a 100 year ARI event. # TABLE C3.2 PRESENT DAY AND POST-DETENTION BASIN PEAK FLOWS CULLEN STREET OVERLAND FLOW PATH — 100 YEAR ARI (m³/s) | | | | | | Sce | nario | | | |-------------------|-------------------------------------|---------------------------|-----------------------|-----------------------|-----------------------------------|---|---|---| | ID ^(f) | Location | Present Day
Conditions | Post-
Basin
CR1 | Post-
Basin
GR2 | Post-
Basins
CR1 and
CR2 |
Post-
Basins
CR1 and
CR2 +
CR5.5 ⁽²⁾ | Post-
Basins
CR1 and
CR2 +
CR5.6 ⁽²⁾ | Post-
Basins
CR1 and
CR2 +
CR5.7 ⁽²⁾ | | [A] | (B) | [c] | [D] | [€] | (F) | [G] | [H] | m | | Q01 | Cullen Street | 5,1 | 0.5 | 5.1 | 0.5 | 0.5 | 0.5 | 0.5 | | Q02 | Upstream of Wade
Street | 5.7 | 1.2 | 5.7 | 1.2 | 1.2 | 1.2 | 1.2 | | Q03 | Crookwell Golf
Course | 5.8 | 5.8 | 0.3 | 0.3 | 0.3 | 0.3 | 0.3 | | Q04 | Downstream of
Wade Street | 11.7 | 9.5 | 7.9 | 4.7 | 4.7 | 4.7 | 4.7 | | Q05 | Surcharge across
Goulburn Street | 8.6 | 6.3 | 5.1 | 1.2 | 0.0 | 0.2 | <0.1 | - Refer Figures C3.4, C3.5 and C3.6 for peak flow location identifiers. - 2. Refer Table C3.1 for details of transverse drainage upgrade Options CR5.5, CR5.6 and CR5.7. #### C3.4.3 CR2 - Grange Road Detention Basin A temporary flood storage volume of 19,800 m³ in combination with a 450 mm diameter low flow pipe is required to control runoff from the 65 ha catchment that lies to the east (upstream) of Grange Road in a 100 year ARI event. The investigation found that while peak flows would be reduced immediately downstream of Basin CR2 (refer columns C and E in Table C3.2), the benefits of the basin would be significantly reduced downstream of the confluence with the Cullen Street Overland Flow Path (refer Figure C3.5). #### C3.4.4 CR1 and CR2 - Combined Detention Basin Strategy Based on the above findings, the construction of Basins CR1 and CR2 in isolation would not result in a significant reduction in flood damages in existing development, as the benefits are principally located upstream of the confluence of the two flow paths. Figure C3.6 shows that if both basins were to be built, then peak flood levels would be reduced by up to 200 mm along the full length of the Cullen Street Overland Flow Path, thereby removing above-floor inundation in three residential dwellings and one commercial building that are located in the vicinity of Goulburn Street. FVFRMS_V1_AppC_[Rev 1.2].doc November 2016 Rev. 1.2 Page C-7 As shown in Table C3.2 (refer column F), a peak flow of 1.2 m³/s would still surcharge the inlet of the transverse structure at Goulburn Street under post-Basin CR1 and CR2 conditions. In order to remove this flow from the surface of Goulburn Street it would be necessary to upgrade the existing transverse drainage structure in conjunction with the construction of the two detention basins. Table C3.2 contains a description of the three transverse drainage upgrade options that were assessed in conjunction with the two detention basins (refer Options CR5.5, CR5.6 and CR5.7). Figure C3.7 shows the effect the combined basin and transverse drainage upgrade options would have on flooding behaviour in the vicinity of Goulburn Street. Whilst the effects of the various options on flooding behaviour appear to be similar, Table C3.2 (refer column G) shows that Option CR5.5 is the only measure that would eliminate surcharge of the transverse drainage structure in a 100 year ARI event. The cost of constructing the two basins in combination with transverse drainage upgrade Option C5.5 is estimated to be about \$4.0 Million and includes the following key cost items: - > Purchase of approximately 5 ha of privately owned land to facilitate the construction of Basins CR1 and CR2. - > Detailed design including geotechnical investigations of foundation conditions and sources of suitable materials for constructing the basin embankments. - > Demolition and removal of existing farm dam upstream of Cullen Street. - > Construction of Basins CR1 and CR2. - ➤ Demolition and removal of the existing Goulburn Street transverse drainage structure and construction of 1 off 3000 mm wide by 900 mm high RCBC. - > Purchase of a 5 m wide easement through commercial/residential properties along the line of upgraded Goulburn Street transverse drainage structure. - > Allowance for un-estimated contingencies (30%); and - > Allowance for survey, investigation and design (15%). Indicative costs of the key elements comprising the combined scheme are summarised in Table C3.3, while Table C3.4 over the page provides an indicative economic assessment of the scheme. Annexure A of this Appendix contains a series of tables which provide a detailed breakdown of the costs associated with each key element. TABLE C3.3 INDICATIVE COST OF COMBINED DRAINAGE UPGRADE STATEGY AT CROOKWELL | Element | Cost
(\$ Million) | |--|----------------------| | Cullen Street Basin (CR1) | 2.0 | | Grange Road Basin (CR2) | 1.3 | | Goulburn Street Trunk Drainage Upgrade (CR5.5) | 0.7 | | Total | 4.0 | FVFRMS_V1_AppC_[Rev 1.2].doc November 2016 Rev. 1.2 Page C-8 ## TABLE C3.4 ECONOMIC ANALYSIS - COMBINED DRAINAGE UPGRADE - CROOKWELL ANALYSIS BASED ON DESIGN FLOOD LEVELS | Discount Rate % | 4 | 7 | 10 | |--|------|------|------| | Present Worth Value of Benefits (Damages Prevented) (\$ Million) | 0.6 | 0.5 | 0.4 | | Cost of scheme (\$ Million) | 4.0 | 4.0 | 4.0 | | Benefit/Cost Ratio | 0.15 | 0.13 | 0.10 | While the scheme would reduce peak flood levels along the Cullen Street Overland Flow Path by more than 200 mm, the present worth value of damages saved for all events up to the 100 year ARI at a discount rate of 7 per cent is only \$0.5 Million. The benefit/cost ratio of a scheme costing about \$4.0 Million is therefore only 0.13. While the scheme could not be justified on economic grounds, it would remove above-floor inundation in three dwellings and one commercial property. It would also eliminate high hazard flooding conditions along the full length of the Cullen Street Overland Flow Path, in addition to reducing the risk of life threatening flooding conditions arising should the embankment of the existing farm dam located upstream of Cullen Street fail. Note that the capital costs of the works could be reduced if Council were to simply acquire easements over the land on which the detention basins were to be built. Furthermore, conservation storage could be incorporated in the design of the basins which would act as a permanent storage that the land owners could use for irrigation purposes. While this would reduce the total cost of the scheme to about \$3.2 Million, the benefit/cost ratio would only increase to 0.16 at a 7 per cent discount rate. #### C3.4.5 Saleyards Road Detention Basin Runoff originating from the hills that lie to the east of Saleyards Road discharges as overland flow through existing residential development during storms which surcharge an existing piped drainage system. While no dwellings would presently experience above-floor inundation during a 100 year ARI storm event, the resulting overland flows would likely cause damages (albeit minor) in eighteen residential allotments. As shown in Figure C3.8, construction of a detention basin in the vacant allotment which is located immediately to the north of the affected properties would prevent surcharge of the existing piped drainage system for all events up to 100 year ARI. . Whilst overland flow would be removed from the properties, the cost of the basin would be significantly greater than the resulting reduction in flood damages. The overland flow path is also of a low hazard nature (refer Figure D1.9, sheet 1 in Appendix D), with future development still permitted within the affected properties in accordance with the controls set out in the draft Flood Policy (refer Appendix D for details). Inclusion of the basin works in the FRMP could therefore not be justified on social and economic grounds. #### C4. GUNNING #### C4.1 General While the majority of existing development in Gunning is located outside the extent of Main Stream flooding, floodwater which breaks out of Meadow Creek along its western bank crosses Cullavin Street where it inundates existing development which is located on the southern side of Yass Street east of Warrataw Street. Development in this area is also impacted by overland flow which surcharges the sag in Yass Street south of Jack Shaw Bridge, as well as flow which discharges through the Gunning Showground. Seven residential dwellings (which include several rooms in the Gunning Motel), three commercial properties and one public building are subject to above-floor inundation in this area during a 100 year ARI flood event. The following measures are principally almed at reducing the severity of flooding which is experienced in existing development which is located in the area, with the exception of the Biala Street Local Drainage Upgrade works. #### C4.2 Meadow Creek Stream Clearing Implementation of maintenance programs to clear creeks of vegetation and debris impeding flow at road crossings was a popular flood modification measure amongst the community. There is very little dense vegetation along the Meadow Creek floodplain and banks, except in the 300 m reach of creek immediately downstream of the Lerida Street causeway. A preliminary assessment of a stream clearing option showed that peak flood levels would be lowered by up to 30 mm in Meadow Creek and up to 50 mm in the area which lies on the southern side of Yass Street east of Warrataw Street. Although there would be a slight reduction in flood damages as a result of the stream clearing measure, the peak flood levels are not lowered sufficient to prevent above-floor inundation. As a result, this option was not considered for inclusion in the FRMP. #### C4.3 Meadow Creek Channel Works An assessment was undertaken to assess whether the removal or reduction in height of the Barbour Park Weir would prevent the break out of flow across Cullavin Street in a 100 year ARI flood event. Halving the height of the weir was found to have a negligible effect on peak flood levels upstream of Jack Shaw Bridge. While its removal lowered peak flood levels by between 300 - 400 mm downstream of Jack Shaw Bridge, the impact was negligible adjacent
to the Cullavin Street break out. It is noted that the adjacent camping area is a popular tourist attraction and the removal of the weir would likely not be supported by the community. Inclusion of the works in the *FRMP* could therefore not be justified on social and economic grounds. #### C4.4 Biala Street Local Drainage Upgrade Presently there is no piped drainage system that captures runoff from a 9.5 ha catchment that is bounded by Grovenor Street, Warrataw Street, Yass Street and Nelanglo Street. As a result, runoff discharges through several properties that are located on the southern side of Biala Street where it then discharges onto Yass Street via a shallow concrete dish drain which is located between Nos. 105 and 109 Yass Street. FVFRMS_V1_AppC_[Rev 1.2].doc November 2016 Rev. 1.2 Page C-10 A flood mitigation scheme (denoted Scheme GU1) was developed which comprises new kerb and gutter along the southern side of Biala Street in combination with a series of new kerb inlet pits connecting to a new 750 mm diameter pipe. The new pipe would extend south through two properties where it would connect into an existing pit which is located adjacent to No. 105 Yass Street. While the scheme would reduce the frequency of nuisance flooding in the area, Figure C4.1 shows that it would only have a minor effect on flooding patterns north (upslope) of Yass Street for events of 20 and 100 year ARI. By inspection, the costs associated with the implementation of the drainage scheme would be significantly larger than the damages prevented. Inclusion of the works in the *FRMP* could therefore not be justified on economic grounds. #### C4.5 Main Southern Railway Upgrade Significant depths of inundation are experienced in the urban parts of Gunning during an extreme flood event, partly as a result of the constrictive effects of the existing railway crossing which is located downstream of the village. Table C4.1 shows the impact replacing the existing brick arch structure with a 200 m long bridge would have on peak PMF levels upstream of the railway corridor. While the upgrade of the Main Southern Railway would result in a reduction in peak flood levels of more than 3 m immediately upstream of the railway corridor, its effects are significantly diminished in the urban parts of the village due to the incised nature of the floodplain in the vicinity of the Jack Shaw Bridge. Based on this finding, the significant costs associated with upgrading the railway culvert could not be justified on economic grounds. It could also not be justified on social grounds as it would not lead to a significant reduction in the depth of flooding in the urban parts of the village during an extreme flood event. TABLE C4.1 IMPACT OF UPGRADING MAIN SOUTHERN RAILWAY CROSSING ON FLOODING BEHAVIOUR PMF | Location | Impact on Peak PMF Levels (m) ⁽¹⁾ | | | | | |---|--|--|--|--|--| | One km downstream of railway corridor | +0.07 | | | | | | Immediately upstream of railway corridor | -3.17 | | | | | | Barbour Park Weir | -2.20 | | | | | | Jack Shaw Bridge | -1.00 | | | | | | Existing development on southern side of
Yass Street east of Warrataw Street | -0.96 | | | | | | Lerida Street Causeway | -0.80 | | | | | A positive value represents an increase, and conversely a negative value represents a reduction in peak flood levels when compared to pre-upgrade conditions. FVFRMS_V1_AppC_[Rev 1.2].doc November 2016 Rev. 1.2 Page C-11 #### C4.6 Cullavin Street Levee #### C4.6.2 GU2 - Cullavin Street Levee Option 1 The Cullavin Street Levee Option 1 scheme consists of a levee which is aimed at preventing the break out of floodwater from the left bank of Meadow Creek in combination with a channel which is aimed at diverting the overland flow which discharges through the Gunning Showground into Meadow Creek upstream of Cullavin Street. Figure C4.2 shows the layout of the Cullavin Street Levee Option 1 scheme. The key features of the scheme include: - ➤ a 540 m earthen embankment (maximum height approximately1.5 m) along the left bank of Meadow Creek from a location adjacent to the Gunning Showground to the western abutment of Jack Shaw Bridge; - > a raised 300 m long section of Warrataw Street (maximum height approximately 1.4 m); - > a 250 m long diversion channel in the Gunning Showground; - > gated 900 mm RCP's at three locations along the levee; and - > minor improvements to the table drains on either side of Warrataw Street. Figure C4.2 shows that the scheme reduces peak flood levels east of Warrataw Street by up to 200 mm. While two of the seven dwellings that are presently subject to above-floor inundation will be rendered flood free, it is not possible to remove flooding from all of the affected properties due to the continued influx of overland flow which originates from upslope areas. As shown in the indicative cost estimates in **Table A4** of **Annexure A** of this Appendix, the cost of the Cullavin Street Levee Option 1 is estimated to be \$1.5 Million. The indicative cost estimates were based on data compiled as part of the *Concept Design of Baradine Town Levee* (L&A, 2016) and includes the following features: - > acquiring an easement along the alignment of the levee through existing privately owned land: - > construction of the earthen embankment and then raising of Warrataw Street to provide 750 mm freeboard above 100 year ARI peak water levels in Meadow Creek; - > construction of a diversion channel through the Gunning Showground; - > piped drainage through the earthen embankment to drain the protected side of the levee; - > geotechnical investigations of foundation conditions and sources of material for the levee construction and test boring along the route; - > allowance for un-estimated contingencies (use 30%); and - > allowance for survey, investigation and design (15%). #### C4.6.2 GU3 - Cullavin Street Levee Option 2 The Cullavin Street Levee Option 2 scheme, the layout of which is shown in Figure C4.3, follows the same alignment as the Option 1 scheme east of Warrataw Street. However, instead of raising Warrataw Street, the levee crosses the road and runs in a westerly direction parallel to the proposed channel in the Gunning Showground. Cullavin Street Levee Option 2 has a similar effect on peak flood levels to Option 1, reducing levels on the protected side of the levee by up to 200 mm and increasing levels in a localised area on Meadow Creek by up to 20 mm. FVFRMS_V1_AppC_[Rev 1.2].doc November 2016 Rev. 1.2 Page C-12 As shown in the indicative cost estimates in **Table A5** of **Annexure A** of this Appendix, the cost of Cullavin Street Levee Option 2 scheme is estimated to be \$1.16 Million. #### C4.7 Economic Analysis As the Cullavin Street Levee Option 2 scheme is \$0.34 Million cheaper than Option 1, it has been adopted for undertaking the economic analysis shown in **Table C4.2**. Construction of the Cullavin Street Levee Option 2 scheme will prevent \$0.17 Million of damages and remove above-floor inundation in two residential dwellings. The remaining dwellings are flooded as a result of local overland flow which originates from areas upslope of Yass Street and ponds in the low-lying land between Warrataw Street and Meadow Creek. The benefit/cost ratio of the scheme at a 7 per cent discount rate is therefore only 0.15 and could not be justified on economic grounds. While the scheme cannot be justified on economic grounds, it would allow future development to proceed with reference to the controls that apply to areas affected by Major Overland Flow (refer Appendix D for further details). While the levee would be considered to have failed from a flood management perspective during floods larger than a 100 year ARI, it would act to reduce flood damages for events slightly larger than an event of this frequency, as described by Stanton in his paper titled "Flood Levee Design Based on Progressive Failure Probability". The likelihood of itinerate occupants of this area needing to be rescued during a major flood event would also be reduced. Despite the potential social benefits of the scheme, its large cost means that it has not been included in the draft FRMP. TABLE C4.2 ECONOMIC ANALYSIS - CULLAVIN STREET LEVEE OPTION 2 - GUNNING ANALYSIS BASED ON DESIGN FLOOD LEVELS | Discount Rate % | 4 | 7 | 10 | |--|------|------|------| | Present Worth Value of Benefits (Damages Prevented) (\$ Million) | 0.21 | 0.17 | 0.14 | | Cost of scheme (\$ Million) | 1.16 | 1.16 | 1.16 | | Benefit/Cost Ratio | 0.18 | 0.15 | 0.12 | #### C5. COLLECTOR #### C5.1 General As discussed in Section 2.4.3 of the main report, the majority of existing development at Collector is located outside the extent of Main Stream flooding, with the exception of one commercial building which is located on Murray Street. There are no feasible flood modification measures which would protect this property, therefore response modification measures are considered to be more appropriate for managing the existing flood risk at Collector (refer Section 3.6 of the main report for further details). The Village of Collector Flood Study results show that the drainage system along the George Street Overland Flow Path is of limited capacity. Surcharges of the drainage system result in shallow sheet flow discharging through residential properties that are located in George Street and Bourke Street. Whilst no above-floor inundation is experienced in these properties, numerous respondents to the community questionnaire identified this as an issue that should be investigated as part of the FRMS. #### C5.2 George Street Drainage Upgrade As shown on Figure C5.1, the George Street Drainage Upgrade follows the alignment of the existing drainage system, and involves increasing the size of the existing culverts and
channels in order to convey the 3.3 m³/s which is estimated to discharge from the Federal Highway culvert during a 100 year ARI storm event. The road crossings would need to be upgraded to 2 off 1200 mm wide by 900 mm high RCBC's and the channel would need to have a base width of 4.0 m and a minimum depth of 1.0 m. As Figure C5.1 shows, the shallow sheet flow caused by the surcharge of the existing drainage system would be removed by implementing this scheme. #### **C5.3** Collector Bypass Channel This scheme involves diverting the flow which discharges from the Federal Highway culverts around the existing development via a channel that runs in a southerly direction along the highway corridor. Preliminary sizing of the channel showed that it would need to have a minimum base width of 4.0 m and a minimum depth of 1.2 m. Figure C5.2 shows that shallow sheet flow which presently discharges through existing development would be removed as a result of the channel works. The NSW SES Local Controller at Collector suggested that an alternative to the above might be to construct a channel along the eastern side of the highway corridor, as it is believed that the watercourse was diverted away from its natural course as part of the highway works and into the village. Further investigation would be required to define the full scope of any channel works, as it is likely that a suitably sized channel would need to extend south to the main arm of Collector Creek in order for the diverted flow not to impact flooding conditions in existing properties. #### C5.4 Recommendations While the Collector Bypass Channel scheme would be a significantly cheaper option than the George Street Drainage Upgrade works, the damages presently caused by flooding in property located along George Street and Bourke Street is only minor. The damages saved as a result of the scheme will therefore be negligible. Hence, this scheme has not been included in the draft FRMP. FVFRMS_V1_AppC_{Rev 1.2}.doc November 2016 Rev. 1.2 Page C-14 #### C6. TARALGA #### C6.1 General Existing development in Taralga is not affect by Main Stream flooding which is confined to within the in-bank area of Corroboree Creek. Local catchment runoff from the hills west of the village is conveyed to Corroboree Creek via a series of overland flow paths which result in above-floor inundation in two residential, one commercial and one public building. #### C6.2 Orchard Street Local Drainage Upgrade At the commencement of the study, Council identified a vacant allotment which is located downstream of Orchard Street as potential development site. The existing channel which runs through the site is of very limited capacity, resulting in shallow inundation of the majority of the allotment. Figure C6.1 shows a culvert and channel arrangement that would confine the flow discharging through the allotment to a narrow corridor, thereby increasing the amount of developable land. The key features of the culvert and channel arrangement include: - upgrading the culverts under Orchard Street and Macarthur Street to 2 off 2700 mm wide by 1200 mm high RCBC's; - > raising the western footpath of Orchard Street by up to 500 mm to prevent overland flow from sheeting across the road by diverting it to the new culvert arrangement; and - > enlarging the existing channel so that it is able to convey the estimated 8.7 m³/s which would be generated by a 100 year AR! storm event. As there is no existing development affected by flooding, the scheme would not offset any existing flood damages. Accordingly, the scheme would not be eligible for funding as part of the NSW Governments Floodplain Management Program and has not been included in the draft FRMP. **ANNEXURE A** TABLE A1 INDICATIVE COST OF CULLEN STREET DETENTION BASIN (CR1) | Item | Description | Unit | Rate | Quantity | Amount | |----------|--|----------------|------------------|----------|----------------| | 1 | Acquisition of Land | ha | \$
180,000.00 | 3.2 | \$
576,000 | | 2 | Geotechnical Investigation and testing | Item | \$
15,000.00 | 1 | \$
15,000 | | 3 | Site Establishment and Set out works by registered surveyor | item | \$
2,500.00 | 1 | \$
2,500 | | 4 | Erosion Control and Care of Creek during construction | Item | \$
5,000.00 | 1 | \$
5,000 | | 5 | Strip topsoil (300mm) over basin footprint | m² | \$
1.50 | 24,500 | \$
36,750 | | 6 | Excavate additional earthworks for cut off trench | m³ | \$
5.00 | 450 | \$
2,250 | | 7 | Proof roll basin foundation and cutoff trench | m² | \$
5.00 | 24,500 | \$
122,500 | | 8 | Excavate storage area | m³ | \$
5.00 | 25,100 | \$
125,499 | | 9 | Place and compact embankment fill | m ³ | \$
18.00 | 3,600 | \$
64,80 | | 10 | Dispose of surplus excavated material | m³ | \$
10.00 | 21,500 | \$
214,99 | | 11 | Place topsoil over basin surface, grass seed and rehabilitate | m² | \$
5.00 | 24,500 | \$
122,500 | | 12 | Supply, Lay Joint RCP Low Level Outlet
Pipes: 1 x 450 mm, Class 4 | m | \$
1,570.00 | 27 | \$
42,39 | | 13 | RC Headwalls Low Level Outlets | Item | \$
8,000.00 | 2 | \$
16,000 | | 14 | Energy Dissipation at Outlets (300 mm
Reno mattress) | m² | \$
60.00 | 20 | \$
1,200 | | ub-Total | | | | | \$
1,347,38 | | | Unestimated Items and Contingencies | 30% | | | \$
404,21 | | ub-Total | | | | | \$
1,751,60 | | | Survey, Investigation and Design | 15% | | | \$
262,74 | | otal | × | | | | \$
2,014,34 | TABLE A2 INDICATIVE COST OF GRANGE ROAD DETENTION BASIN (CR2) | Item | Description | Unit | | Rate | Quantity | Amount | |----------|--|----------------|----|------------|----------|----------------| | 1 | Acquisition of Land | ha | \$ | 180,000.00 | 2.0 | \$
360,00 | | 2 | Geotechnical Investigation and testing | item | \$ | 15,000.00 | 1 | \$
15,00 | | 3 | Site Establishment and Set out works by registered surveyor | Item | \$ | 2,500.00 | 1 | \$
2,50 | | 4 | Erosion Control and Care of Creek during construction | item | \$ | 5,000.00 | 1 | \$
5,00 | | 5 | Strip topsoil (300mm) over basin footprint | m² | \$ | 1.50 | 16,500 | \$
24.75 | | 6 | Excavate additional earthworks for cut off trench | m ³ | \$ | 5.00 | 620 | \$
3,10 | | 7 | Proof roll basin foundation and cutoff trench | m² | \$ | 5.00 | 16,500 | \$
82,50 | | 8 | Excavate storage area | m³ | \$ | 5.00 | 14,900 | \$
74,50 | | 9 | Place and compact embankment fill | m³ | \$ | 18.00 | 3,600 | \$
64,80 | | 10 | Dispose of surplus excavated material | m³ | \$ | 10.00 | 11,000 | \$
110,00 | | 11 | Place topsoil over basin surface, grass seed and rehabilitate | m² | \$ | 5.00 | 16,500 | \$
82,50 | | 12 | Supply, Lay Joint RCP Low Level Outlet
Pipes: 1 x 450 mm, Class 4 | m | \$ | 1,570.00 | 27 | \$
42,39 | | 13 | RC Headwalls Low Level Outlets | Item | \$ | 00.000,8 | 2 | \$
16,00 | | 14 | Energy Dissipation at Outlets (300 mm
Reno mattress) | m² | \$ | 60.00 | 20 | \$
1,20 | | ub-Total | | | 10 | | | \$
884,24 | | | Unestimated Items and Contingencies | 30% | | | | \$
265,27 | | ub-Total | | | | | | \$
1,149,51 | | | Survey, Investigation and Design | 15% | | | | \$
172,42 | | otal | | | | | | \$
1,321,93 | TABLE A3 INDICATIVE COST OF GOULBURN STREET TRUNK DRAINAGE UPGARDE (CR5.5) | Item | Description | Unit | | Rate | Quantity |
Amount | |----------|---|----------------|----|------------|----------|---------------| | 1 | Establish Easement along alignment of pipe | Item | \$ | 10,000.00 | 1 | \$
10,000 | | 2 | Geotechnical Investigation and potholing to identify services | item | \$ | 5,000.00 | 1 | \$
5,000 | | 3 | Establishment and Traffic Control in Goulburn Street | ltem | \$ | 5,000.00 | 1 | \$
5,000 | | 4 | Services Adjustment | Item | \$ | 5,000.00 | 1 | \$
5,000 | | 6 | Demolish pavement in Goulburn Lane and
Goulburn Street | m ² | \$ | 20.00 | 125 | \$
2,500 | | 6 | Demolish exisiting transverse drainage structure | Item | \$ | 100,000.00 | 1 | \$
100,000 | | 6 | Excavate Trench 3000 x 900 RCBC | m ² | \$ | 55.00 | 360 | \$
19,800 | | 7 | Supply, Lay, Joint and Backfill 3000 x 900 RCBC | m | \$ | 4,500.00 | 70 | \$
315,000 | | 8 | Provide 1 junction pit along route of pipeline | item | \$ | 10,000.00 | 1 | \$
10,000 | | 9 | RC Headwalls at inlet | Item | \$ | 10,000.00 | 1 | \$
10,000 | | 11 | Reinstate pavement in Goulburn Lane and Goulburn Street | m ² | \$ | 30.00 | 125 | \$
3,750 | | ub-Total | | | | | | \$
486,050 | | | Unestimated Items and Contingencies | 30% | T | | | \$
145,815 | | ub-Total | | | | | | \$
631,865 | | | Survey, Investigation and Design | 15% | | | | \$
94,780 | | otal | * | | | | | \$
726,648 | TABLE A4 INDICATIVE COST OF CULLAVIN STREET LEVEE OPTION 1 | ltem | Description | Unit | | Rate | Quantity | Amount | |----------|--|------|-----|-----------|----------|-----------------| | 1 | Establish Easement along alignment of pipe | ha | \$ | 25,000.00 | 0.7 | \$
17,500 | | 2 | Geotechnical Investigation and potholing to identify services | Item | \$ | 10,000.00 | 1 | \$
10,000 | | 3 | Establishment and Traffic Control in Warrataw Street | ltem | \$ | 5,000.00 | 1 | \$
5,000 | | 4 | Services Adjustment | Item | \$ | 5,000.00 | 1 | \$
5,000 | | 6 | Excavated and Construct Earth Embankment Typer Levee between Warrataw Street and Jack Shaw Bridge ⁽¹⁾ | m | \$ | 800.00 | 500 | \$
400,000 | | 6 | Upgrade Warrataw Street / Park Street (2) | m | \$ | 1,600.00 | 280 | \$
448,000 | | 7 | Supply, Lay, Joint and Backfill 900 RCP | m | \$ | 1,570.00 | 60 | \$
94,200 | | 8 | Diversion Channel
through Gunning
Showground | m | \$ | 100.00 | 240 | \$
24,000 | | ub-Total | | | | | | \$
1,003,700 | | | Unestimated Items and Contingencies | 30% | | | | \$
301,110 | | ub-Total | | | | | | \$
1,304,810 | | | Survey, Investigation and Design | 15% | | | | \$
195,722 | | otal | | | 111 | | | \$
1,500,532 | ^{1.} Based on average cost per m length of earth embankment as determined in Concept Design of Baradine Town Levee (2016) ^{2.} Based on average cost per m length of upgraded/raised road as determined in Concept Design of Baradine Town Levee (2016) TABLE A5 INDICATIVE COST OF CULLAVIN STREET LEVEE OPTION 2 | item | Description | Unit | | Rate | Quantity | Amount | |---|--|------|---------------|-----------|----------|-----------------| | 1 | Establish Easement along alignment of pipe | ha | \$ | 25,000.00 | 0.7 | \$
17,500 | | 2 | Geotechnical Investigation and potholing to identify services | Item | \$ | 10,000.00 | 1 | \$
10,000 | | 3 | Establishment and Traffic Control in
Warrataw Street | ltem | \$ | 5,000.00 | 1 | \$
5,000 | | 4 | Services Adjustment | ltem | \$ | 5,000.00 | 1 | \$
5,000 | | 6 | Excavated and Construct Earth Embankment Typer Levee between Warrataw Street and Jack Shaw Bridge ⁽¹⁾ | m | \$ | 800.00 | 500 | \$
400,000 | | 6 | Upgrade Warrataw Street / Park Street ⁽²⁾ | m | \$ | 1,600.00 | 30 | \$
48,000 | | 7 | Excavated and Construct Earth Embankment Typer Levee between Warretaw Street and Copeland Street ⁽¹⁾ | m | \$ | 800.00 | 220 | \$
176,000 | | 8 | Supply, Lay, Joint and Backfill 900 RCP | m | \$ | 1,570.00 | 60 | \$
94,200 | | 9 | Diversion Channel through Gunning
Showground | m | \$ | 100.00 | 220 | \$
22,000 | | 1 Establish Easement along alignment of pipe ha \$ 25,000.00 0.7 2 Geotechnical Investigation and potholing to identify services ltem \$ 10,000.00 1 3 Establishment and Traffic Control in Warrataw Street ltem \$ 5,000.00 1 4 Services Adjustment ltem \$ 5,000.00 1 5 Excavated and Construct Earth Embankment Typer Levee between Warrataw Street and Jack Shaw Bridge how warrataw Street and Jack Shaw Bridge how \$ 1,600.00 30 1 6 Upgrade Warrataw Street / Park Street (2) m \$ 1,600.00 30 1 7 Excavated and Construct Earth Embankment Typer Levee between Warrataw Street and Copeland Street (1) | | | \$
777,700 | | | | | | Unestimated Items and Contingencies | 30% | | | | \$
233,310 | | Unestimated items and Contingencies 30% | | | | | | \$
1,011,010 | | | Survey, Investigation and Design | 15% | I | | | \$
151,652 | | otal | | | | | | \$
1,162,662 | ^{1.} Based on average cost per m length of earth embankment as determined in Concept Design of Baradine Town Levee (2016) ^{2.} Based on average cost per m length of upgraded/raised road as determined in Concept Design of Baradine Town Levee (2018) # APPENDIX D DRAFT FLOOD POLICY #### **TABLE OF CONTENTS** | | | P | age No. | |-----|-------|--|---------| | D1. | INTRO | DUCTION | D-1 | | | D1.1 | What does the Policy do? | D-2 | | | D1.2 | Objectives | D-2 | | | D1.3 | Will the Policy affect my Property? | | | | D1.4 | How to use this Policy | D-2 | | | D1.5 | Other Documents Which May Need to be Read in Conjunction with this Po | | | D2. | WHAT | ARE THE CRITERIA FOR DETERMINING APPLICATIONS? | D-4 | | | D2.1 | General | D-4 | | | D2.2 | Division of the Floodplain into Hazard Zones | | | | D2.3 | Main Stream Flooding | | | | D2.3 | Minor Tributary Flooding | | | | D2.4 | Major Overland Flow | | | | D2.6 | Local Drainage | | | | D2.7 | Land Use Categories and Minimum Floor Level Requirements | | | | D2.8 | Assessing Commercial and Industrial Development Proposals | D-7 | | | D2.9 | Critical Utilities and Essential Services | D-7 | | | D2.10 | Schools and Vulnerable Residential Development | D-8 | | | D2.11 | Minor Additions (Residential) | D-8 | | | D2.12 | Checking of Completed Finished Floor Height | D-8 | | | D2.13 | Fencing | D-8 | | | D2.14 | Other Uses and Works | D-8 | | | D2.15 | Land Filling and Obstructions to Flow | D-8 | | | D2.16 | Flood Related Information to be Submitted to Council | D-9 | | | | D2.16.1 Survey Details - Existing Site and Proposed Development | D-9 | | | | D2.16.2 Evaluation of Development Proposals | D-9 | | | | D2.16.3 Flood Risk Report - Inner Floodplain (Hazard Category 2), High | Hazard | | | | Floodway and Low Hazard Floodway / Flood Storage Zones | D-10 | | D3. | GLOS | SARY OF TERMS | D-12 | | D4. | REFE | RENCES | D-15 | #### **ANNEXURES** ANNEXURE 1 - Land Use Categories ANNEXURES 2.1 and 2.2 - Development Controls Matrices ANNEXURE 3A - General Building Matters ANNEXURE 3B - Flood Compatible Materials ANNEXURE 4 - Development Application Requirements #### **FIGURES** (BOUND IN VOLUME 2) - Extract of Flood Planning Map Showing Extent of Flood Planning Area at Crookwell D1.1 (Sheets 1 and 2) Extract of Flood Planning Map Showing Extent of Flood Planning Area at Gunning D1.2 - Extract of Flood Planning Map Showing Extent of Flood Planning Area at Collector D1.3 - Extract of Flood Planning Map Showing Extent of Flood Planning Area at Taralga D1.4 - Crookwell Development Controls Matrix Map (Sheets 1 and 2) D1.5 - D1.6 Gunning Development Controls Matrix Map - D1.7 Collector Development Controls Matrix Map - Taraiga Development Controls Matrix Map D1.8 - D1.9 Crookwell Flood Hazard Map (Sheets 1 and 2) - D1.10 Gunning Flood Hazard Map - D1.11 Collector Flood Hazard Map - D1.12 Taralga Flood Hazard Map #### **ABBREVIATIONS** AHD Australian Height Datum ARI Average Recurrence Interval (years) EP&A Environmental Planning and Assessment FPL Flood Planning Level (100 year ARI flood level + freeboard) FPA Flood Planning Area (area inundated at the FPL) FRMS&DP Floodplain Risk Management Study and Draft Plan LEP Local Environmental Plan MFL Minimum Floor Level (100 year ARI flood level + freeboard) MOF Major Overland Flow MOF MFL Major Overland Flow Minimum Floor Level (100 year AR! flood level plus 300 mm freeboard) MSF Main Stream Flooding MSMTF MFL Main Stream and Minor Tributary Flooding Minimum Floor Level (100 year ARI flood level plus 500 mm freeboard) MTF Minor Tributary Flooding NSW SES New South Wales State Emergency Service PMF Probable Maximum Flood #### D1. INTRODUCTION This Flood Policy has been prepared to provide specific controls to guide development of land in flood prone areas in the villages of Crookwell, Gunning, Collector and Taralga. The Flood Policy incorporates the findings of *The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study & Draft Plan, 2016 (FRMS&DP)* and the procedures set out in the NSW Floodplain Development Manual (NSWG, 2005). The FRMS&DP identified the occurrence of three types of flooding in the four villages: - ➤ Main Stream Flooding (MSF) resulting from overflows of the main channels of the Crookwell River and Kiamma Creek at Crookwell, Meadows Creek at Gunning, Collector Creek at Collector and Corroboree Creek at Taralga. These flows may be several metres deep in the channels and relatively fast moving with velocities up to 2 m/s. For planning purposes, flooding along the Cullen Street Overland Flow Path at Crookwell has been assessed in the same way as flow in the channels of the Crookwell River and Kiamma Creek. - ➤ Minor Tributary Flooding (MTF) resulting from overflows of the minor watercourses which drain the relatively steep hillsides biordering the aforementioned creeks. While flow in the inbank area of the minor watercourses is generally greater than 0.5 m, overbank flow is relatively shallow and slow moving with velocities typically less than 0.5 m/s. - ➤ Major Overland Flow (MOF) is present along several flow paths that run through the urbanised parts of the four villages. Flows on the MOF paths would typically be up to a maximum of 300 mm deep, travelling over the surface at velocities less than 0.5 m/s. The Flood Policy takes into account the "Guideline on Development Controls on Low Flood Risk Areas" and Ministerial Direction No 4.3 issued by the then Department of Planning on 1 July 2009. As a consequence, residential areas within the extent of the Flood Planning Area (FPA) shown on the Flood Planning Map are subject to flood related development controls in this Flood Policy. Figures D1.1, D1.2, D1.3 and D1.4 are extracts from the Flood Planning Map showing the extent of the FPA in the villages of Crookwell, Gunning, Collector and Taralga respectively. Within the FPA, the controls over residential development reflect the nature of the flood risk. The division of the floodplain into hazard areas is shown on the Flood Hazard Map for each village (refer Figures D1.9, D1.10, D1.11 and D1.12). The Policy recognises the need for controls over commercial and industrial development within the FPA to balance the flood risk against the requirement for continuing the long term viability of this sector in the four villages. The Policy also recognises that the safety of people and associated emergency response planning need to be considered and imposes restrictions on vulnerable development (for example education facilities and aged care facilities) and critical emergency response and recovery
facilities and infrastructure (evacuation centres, hospitals and utilities). #### D1.1 What does the Policy do? The Flood Policy provides information to assist people who want to develop or use land affected by potential flooding in Crookwell, Gunning, Collector and Taralga. Development may include, among other things: - dwelling construction, including additions to existing dwellings; - filling land to provide building platforms above flood level; - commercial and industrial development; - subdividing land. #### D1.2 Objectives The objectives of this Flood Policy are: - (a) To provide detailed flood related development controls for the assessment of applications on land affected by floods in accordance with the provisions of Upper Lachlan LEP 2010 and the findings of The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan, 2016. - (b) To alert the community to the hazard and extent of land affected by floods. - (c) To inform the community of Council's policy in relation to the use and development of land affected by the potential floods in the four villages. - (d) To reduce the risk to human life and damage to property caused by flooding through controlling development on land affected by floods. - (e) To ensure new development is consistent with the flood response strategies adopted by the NSW State Emergency Service (NSW SES) and does not impose additional burdens on, or risk to its personnel during flood emergencies. Definitions of flood related terms used herein are provided in the Glossary in Section D3 of this document. #### D1.3 Will the Policy affect my Property? The Policy applies to all development permitted with the consent of Council on land: - i) to which the Upper Lachlan LEP 2010 applies, - ii) that lies within the extent of the FPA, as shown in Figures D1.1, D1.2, D1.3 and D1.4; and - iii) that lies on the floodplain but outside the extent of the FPA (refer area identified as "Outer Floodplain" in Figure D1.1, D1.2, D1.3 and D1.4). #### D1.4 How to use this Policy The Policy provides criteria which Council will use for the determination of development applications in areas within the extent of the FPA in the four villages. The criteria recognise that different controls apply to different land uses and levels of potential flood inundation or hazard. FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-2 The procedure Council will apply for determining the specific controls applying to proposed development within the FPA is set out below. Upon enquiry by a prospective applicant, Council will make an initial assessment of the flood affectation and flood levels at the site using the following procedure: - i) Determine which part of the floodplain the development is located in from Figures D1.1, D1.2, D1.3 and D1.4. - ii) Determine which Development Controls Matrix applies to the development from Figures D1.5, D1.6, D1.7 and D1.8. - iii) Determine the flood hazard zone(s) that applies to the development from Figures D1.9, D1.10, D1.11 and D1.12. - iv) Identify the category of the development from Annexure 1: Land Use Category. - v) Determine the flood level at the site using information contained in The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan, 2016, as well as the appropriate freeboard for defining the Minimum Floor Level (MFL) and flood related development controls for the category of development from Figures D1.5, D1.6, D1.7 and D1.8 and Annexure 2: Development Controls Matrices. - vi) Confirm that the development conforms with the controls in Annexure 2. With the benefit of this initial information from Council, the Applicant will prepare the documentation to support the development application according to Annexures 2 and 4. A survey plan showing natural surface levels over the site will be required as part of the Development Application documentation. Provision of this plan by the applicant at the initial enquiry stage will assist Council in providing flood related information relevant to the site. Further information on flooding in the four villages and the controls over development imposed by this Policy are available by discussion with and upon written application to Council. #### D1.5 Other Documents Which May Need to be Read in Conjunction with this Policy - New South Wales Government (NSWG) Floodplain Development Manual (NSWG, 2005); and associated Guideline on Development Controls on Low Flood Risk Areas; and Ministerial Direction No. 4.3, 1 July 2009; - Upper Lachlan Local Environmental Plan 2010; - The Village of Crookwell Flood Study (Lyall & Associates (L&A), 2014a); - The Village of Gunning Flood Study (L&A, 2014b); - The Village of Collector Flood Study (L&A, 2014c); - The Village of Taralga Flood Study (L&A, 2014d); - The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan (L&A, 2016); and - Relevant Council policies, development control plans and specifications. #### D2. WHAT ARE THE CRITERIA FOR DETERMINING APPLICATIONS? #### D2.1 General Development controls on flood prone land are set out in **Annexure 2** of this Flood Policy. The controls recognise that different controls are applicable to different land uses, the location within the floodplain, levels of potential flood inundation and flood hazard. The controls applicable to proposed development depend upon: - > The type of development. - > The part(s) of the floodplain where the development is located. - > Peak flood levels at the site of the development. #### D2.2 Division of the Floodplain into Hazard Zones Figures D1.9, D1.10, D1.11 and D1.12 shows the division of the floodplain at the four villages into a number of flood hazard zones in areas subject to MSF, MTF and MOF. #### D2.3 Main Stream Flooding In the areas subject to MSF: The Inner Floodplain (Hazard Category 1) zone (shown as a solid red colour) comprises areas where factors such as the depth and velocity of flow, time of rise, isolation on Low Flood Islands and evacuation problems mean that the land is unsuitable for some types of development. It includes areas of High and Low Hazard Floodway, Flood Storage, Flood Fringe, Intermediate Floodplain and Outer Floodplain areas. Erection of a buildings and carrying out of work not permitted; use of land, subdivision of land and demolition subject to State Environmental Planning Policies and Local Environmental Plan provisions are not permitted in the zone. The Inner Floodplain (Hazard Category 2) zone (shown as a solid yellow colour) comprises Low Hazard Floodway and Flood Storage areas where development other than Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable development is permitted provided it is capable of withstanding hydraulic forces and sited on the allotment to minimise adverse redirections of flow towards adjacent properties. Council may require a Flood Risk Report if it considers that the proposal has the potential to significantly affect flooding behaviour in adjacent properties. The Intermediate Floodplain for Main Stream flooding (shown as a solid blue colour) is the remaining land lying outside the extent of the Inner Floodplain zones, but within the FPA (defined as land which lies below the 100 year ARI flood level plus 500 mm freeboard). Within this area, there would only be the requirement for MFL's to be set at the 100 year ARI flood levels plus 500 mm. Land use permissibility would be as specified by State Environmental Planning Policies or the Local Environmental Plan. However, Essential Community Facilities, Critical Utilities and Flood Vulnerable development such as schools and housing for aged and disabled persons would be subject to additional controls, which are identified in subsequent sections and in Annexure 2.1. FVFRMS_V1_AppD_{Rev 1.2].doc November 2016 Rev. 1.2 Page D-4 The Outer Floodplain is the remainder of the floodplain between the Intermediate Floodplain and the extent of the Probable Maximum Flood - PMF (that is, the extent of the floodplain) (shown as a solid cyan colour). This area is outside the extent of the FPA. However, controls on Essential Community Facilities, Critical Utilities schools and Flood Vulnerable development identified in Annexure 2.1 would apply in this area. #### **D2.3 Minor Tributary Flooding** In the areas subject to MTF: High and Low Hazard Floodway areas are generally confined to the inbank area of the minor watercourses which drain the relatively steep hillsides bordering the major creek systems which run through the village area, while Flood Storage areas are generally confined to existing farm dams. High Hazard Floodway areas along these minor watercourses have been defined as the Inner Floodplain (Hazard Category 1) zone (shown as a solid red colour), while Low Hazard Floodway and Flood Storage areas have been defined as the Inner Floodplain (Hazard Category 2) zone (shown as a solid yellow colour). Similar to Main Stream Flooding, some development types in the Inner Floodplain (Hazard Category 1) zone is not permitted. Similarly, development other than Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable development is permitted in the Inner Floodplain (Hazard Category 2) zone provided it is capable of withstanding hydraulic forces and sited on the allotment to minimise adverse redirections of flow towards adjacent properties. Council may require a Flood Risk Report if it considers that the proposal has the potential to significantly affect flooding behaviour in adjacent properties. The Intermediate Floodplain for Minor Tributary flooding is the remaining land lying outside the extent of the Inner Floodplain zones, but where depths of inundation in a 100 year ARI flood will exceed 150 mm (shown as a solid blue colour). Within properties affected by this area, there would only be the requirement for MFL's to be set at
the 100 year ARI flood levels plus 500 mm. Land use permissibility would be as specified by State Environmental Planning Policies or the Local Environmental Plan. However, Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable development would be subject to additional controls, which are identified in subsequent sections and in Annexure 2.1. The Outer Floodplain is the remainder of the floodplain between the Intermediate Floodplain and the extent of the PMF (shown as a solid cyan colour). This area is outside the extent of the FPA. However, controls on Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable development identified in Annexure 2.1 would apply in this area. #### D2.4 Major Overland Flow MOF is present along several flow paths that run through the developed parts of the four villages. Flows on the MOF paths would typically be up to a maximum of 300 mm deep in a 100 year ARI storm event, travelling over the surface at velocities less than 0.5 m/s. These characteristics result in the flow on the MOF paths typically being of a low hazard nature. FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-6 The Floodway identifies the zone where significant flows occur and has been subdivided into high hazard and low hazard areas.¹ While areas of High Hazard Floodway have been separately identified (refer High Hazard Floodway zone shown as a solid orange colour), areas of Low Hazard Floodway have been combined with Flood Storage areas into a single zone (refer Low Hazard Floodway / Flood Storage zone shown as a solid green colour). Along the MOF paths, the Intermediate Floodplain is defined by the area outside the Floodway and Flood Storage areas where depths of flow would exceed 150 mm in a 100 year ARI event (shown as a solid blue colour). The Outer Floodplain is the area outside the Floodway, Flood Storage and Intermediate Floodplain areas where depths of flow would exceed 150 mm in a PMF event (shown as a solid cyan colour). Flood related controls are specified in Annexure 2.2. Council discourages new residential development within the High Hazard Floodway portion of the MOF paths, but may permit development in the Low Hazard Floodway / Flood Storage zone, provided it is capable of withstanding hydraulic forces and is sited within the allotment to minimise adverse re-direction of flow towards adjacent properties. There are restrictions on site filling in this zone to prevent blockage of flows (ref. Section D2.15). Similar controls exist for commercial and industrial development. Council may require a Flood Risk Report for development proposals in this zone (typically for larger scale commercial or industrial developments). Minor additions to existing residences and small outbuildings may be permitted by Council in the High Hazard Floodway zone, subject to conformance with the controls specified in Annexure 2.2 and the provision of a satisfactory Flood Risk Report demonstrating that the development is capable of withstanding hydraulic forces and is sited to minimise adverse redirections of flow to adjacent properties. Site filling in this zone will not be permitted (refer Section D2.15). Controls on Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable development identified in Annexure 2.2 would apply to development located in the Outer Floodplain. #### D2.6 Local Drainage At the lower end of the scale, drainage problems are typically caused by direct surface runoff, surcharges and overflows from low points in kerbs, or overflows from the smaller pipes in the stormwater drainage system. They typically involve depths of inundation up to 300 mm. In the Floodplain Development Manual (NSWG, 2005), these situations are categorised as Local Drainage. NSWG, 2005 recognises that Local Drainage problems are not always amenable to rigorous analysis and therefore Council is <u>not</u> obliged to convey information on Planning Certificates under Section 149 of the EP&A Act. Local Drainage problems involve shallow depths of inundation with generally little danger to personal safety. Problems due to property inundation generally arise because of deficiencies in stormwater management controls or building practice where floor levels are near finished ground levels. ¹ Note that in order to maintain connectively between the areas of deeper flow, the Floodway zone has been extended in some areas to include areas where the depth of flow is less than 150 mm. In the villages of Crookwell, Gunning, Collector and Taralga, the threshold between MOF and Local Drainage has been reduced to 150 mm in recognition that depths of flow greater than this value could result in above-floor inundation if appropriate controls are not imposed on new development. #### D2.7 Land Use Categories and Minimum Floor Level Requirements Eight land use categories have been adopted. The specific land use in each category is listed in **Annexure 1**. The MFL's for the various land use types are: - > For new residential development, the MFL is the peak 100 year ARI flood level at the particular development site, plus an allowance for freeboard. Within the MSF and MTF FPA's, the freeboard is 500 mm. For residential allotments in the FPA of the MOF paths, the freeboard is 300 mm. - > For commercial and industrial development the MFL is the peak 100 year ARI flood level plus freeboard. Within the MSF and MTF FPA's, the freeboard is 500 mm. For allotments in the FPA of the MOF paths, the freeboard is 300 mm. Council may at its discretion allow variation to this MFL, subject to local conditions (refer Section D2.8). - > For Essential Community Facilities and Critical Utilities the MFL is the peak 100 year ARI flood level plus freeboard. Within the MSF and MTF FPA's, the freeboard is 500 mm. For allotments in the FPA of the MOF paths, the freeboard is 300 mm. In addition, these uses are to be designed to be able to continue to function and suffer minimal damage to structure and valuable contents in the event of a PMF (refer Section D2.9). - > For Schools and Flood Vulnerable Residential Development (nursing homes, aged care facilities and the like) the MFL is the peak 100 year ARI flood level plus freeboard. Within the MSF and MTF FPA's, the freeboard is 500 mm. For allotments in the FPA of the MOF paths, the freeboard is 300 mm. Council will require an area at a higher level (to be determined by Council) for the storage of valuable equipment and will also require the applicant to demonstrate that there is safe access to and from the site in the event of a flood emergency (refer Section D2.10). #### D2.8 Assessing Commercial and Industrial Development Proposals The Flood Policy nominates the same MFL as for residential development. However, where it is not practicable to achieve this level, Council may approve a lesser level commensurate with the local streetscape. In this eventuality, the applicant is to provide an area within the development for the storage of goods at a minimum level equal to the MFL. This area should be at least 20% of the gross floor area, or as determined by Council. #### D2.9 Critical Utilities and Essential Services The Flood Policy nominates the same MFL as for residential development. It also recognises that critical utilities and essential services necessary for emergency management need to be designed to be capable of operating during extreme flood events and constructed of flood resistant materials so as to suffer minimal damages at a higher level of flooding than the MFL. Development proposals are to ensure that valuable equipment necessary for the operation of the facility is located at or above the PMF, or otherwise protected from extreme flooding. Council will also require development proposals to provide safe and reliable access to facilities during major flooding. FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-7 ### D2.10 Schools and Vulnerable Residential Development The Flood Policy nominates the same MFL for Schools and Flood Vulnerable Residential Development (which includes nursing homes, aged care facilities and the like) as for residential development. The applicant is also to ensure that valuable equipment necessary for the operation of the facility is located above the MFL (at a level determined by Council). Council will also require development proposals to provide safe and reliable access during major flooding. ### D2.11 Minor Additions (Residential) Council has nominated the floor levels of minor additions to residences to be no lower than the MFL. However, where it can be demonstrated by the applicant that this is not practicable, Council at its discretion may allow a reduction in minimum floor levels, provided that the level is at least 300 mm above natural ground level, or as otherwise determined by Council so as to be above the level of frequent flooding. ### D2.12 Checking of Completed Finished Floor Height After the building has been built to the relevant MFL, Council officers will check compliance with this requirement at the relevant inspection stage. The applicant is to provide a benchmark on the site, levelled to Australian Height Datum (AHD). Alternatively, Council officers may require surveyor's certification as the finished floor height(s). ### D2.13 Fencing Any proposed fencing is to be shown on the plans accompanying a development application to allow Council to assess the likely effect of such fencing on flood behaviour. In the Inner Floodplain (Hazard Categories 1 and 2), High Hazard Floodway and Low Hazard Floodway / Flood Storage zones where flow velocities may be significant, fences which minimise obstructions to flow are to be adopted. Where impermeable fences such as Colorbond, galvanised metal, timber or brush are proposed, fencing panels should be either: - a) removable so that panels can be laid flat; or - b) horizontally hinged where a portion of at least 1 m high is capable of swinging open
to allow floodwater to pass. Trees/landscaping and other structures are not to impede the ability of a hinged fence to open. ### D2.14 Other Uses and Works All other development, building or other works within any of the categories that require Council's consent will be considered on their merits. In consideration of such applications, Council must determine that the proposed development is in compliance with the objectives of this Policy. ### D2.15 Land Filling and Obstructions to Flow No filling or alteration of the land surface is permissible in the Inner Floodplain (Hazard Category 1) and High Hazard Floodway zones due to the potential for filling or obstructions to flow to adversely re-direct flows. Any minor extensions or repairs permitted by Council should be located on piers to minimise obstructions to the passage of flow, with the underside of any structure supporting the buildings to be above the 100 year ARI flood level. FVFRMS_V1_AppD_fRev 1.2].doc November 2016 Rev. 1.2 Page D-8 Council may permit building pads for residential blocks in the Inner Floodplain (Hazard Category 2) and Low Hazard Floodway / Flood Storage zones, provided it is satisfied that the proposal will not significantly obstruct or adversely re-direct flows towards adjacent developments. In order not to significantly obstruct flows, Council may require part of the development to be located on piers to minimise obstructions to the passage of flow, with the underside of any structure supporting the buildings to be above the 100 year ARI flood level. Sub-surface drainage of building pads is required. ### D2.16 Flood Related Information to be Submitted to Council ### D2.16.1 Survey Details - Existing Site and Proposed Development A Survey Plan prepared by a Registered Surveyor is required to be lodged with the Development Application for properties located on flood affected land as shown on the Flood Planning Map. The Survey Plan will enable Council to assess the extent and depth of inundation over the site (at existing natural surface levels) and must indicate the following: - > the location of existing building or structures; - > the floor levels and ceiling heights of all existing buildings or structures to be retained; - existing and/or proposed drainage easements and watercourses or other means of conveying flood flows that are relevant to the flood characteristics of the site; - > 100 year ARI flood level(s) over the site (to be provided by Council); and flood extents; and - > 0.2 metre natural surface contour intervals across the entire property (existing and proposed). Note: All levels must be relative to AHD. Annexure 4 outlines requirements for survey data required by Council. ### D2.16.2 Evaluation of Development Proposals The Applicant will need to demonstrate, using Council supplied flood information, that: - The development conforms with the requirements of this Policy for the particular Flood Hazard zone in which it is located. - Depending on the nature and extent of the development and its location within the floodplain, Council may request the Applicant to prepare a Flood Risk Report to demonstrate that the proposal does not increase the flood hazard to existing and future occupiers of the floodplain (see Section D2.16.3). Council will make its evaluation and confirm requirements regarding the proposed site development, based on the Survey Plan and accompanying data on the proposed development (see Annexure 4); and according to the conformance of the proposal with the performance requirements of the Development Controls Matrices — Annexures 2.1 and 2.2 and Chapter D2. FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-9 ### D2.16.3 Flood Risk Report - Inner Floodplain (Hazard Category 2), High Hazard Floodway and Low Hazard Floodway / Flood Storage Zones ### A. Scope of Work - General Council will require a Flood Risk Report for any (minor) residential development located in the High Hazard Floodway zone. Depending on its nature and scale, Council may also require a Flood Risk Report for a development situated in the Inner Floodplain (Hazard Category 2) and Low Hazard Floodway / Flood Storage zones where lesser but still significant flow velocities may be expected and/or where depths of inundation may be significant and a partial filling may restrict flow. Typically, such a report may be required for a large commercial or industrial development which Council considers has the potential to adversely re-direct flows. This report is to be prepared by a suitably qualified Consulting Engineer and must address the following: - a) Confirm the MFL for the particular category of development (MFL to be determined through enquiries of Council). - b) Specify proposed floor levels (and existing floor levels where they are to be retained) of habitable and non-habitable structures. - c) Include a site-specific flood assessment that may require flood modelling to demonstrate that there will be no adverse impact on surrounding properties as a result of the development, up to the 100 year ARI flood. - d) Propose measures to minimise risk to personal safety of occupants and the risk of property damage, addressing the flood impacts on the site of the 100 year ARI flood. These measures shall include but are not limited to the following: - > Types of materials to be used, up to the MFL to ensure the structural integrity for immersion and impact of velocity and debris. - Waterproofing methods, including but not limited to electrical equipment, wiring, fuel lines or any other service pipes and connections. - e) Confirm the structural adequacy of the development, taking into account the following: - all piers and all other parts of the structure which are subject to the force of flowing waters or debris have been designed to resist the stresses thereby induced. - all forces transmitted by supports to the ground can be adequately withstood by the foundations and ground conditions existing on the site. - the structure will be able to withstand stream flow pressure, force exerted by debris, and buoyancy and sliding forces caused by the full range of flooding up to the MFL. - f) All electrical connections must be located above the MFL. Council will also require all electrical circuit connections to be automatically isolated in the event of flood waters having the potential to gain access to exposed electrical circuits, either internal or external of the building (see also Annexure 3A). - g) All materials used in the construction are to be flood compatible to a minimum level equivalent to the MFL (Annexure 3B). FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-10 ### B. Additional Items (Commercial and Industrial Development) h) For commercial and industrial development (in the Inner Floodplain (Hazard Category 2) and Low Hazard Floodway / Flood Storage zones), include flood warning signs/depth indicators for areas that may be inundated, such as open car parking areas. FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-11 ### D3. GLOSSARY OF TERMS Note: For expanded list of definitions, refer to Glossary contained within the NSW Government Floodplain Development Manual, 2005. | TERM | DEFINITION | |---|---| | Average Recurrence
Interval (ARI) | The average return period between the occurrence of a particular flood event For example, a 100 year ARI flood has an average recurrence interval of 100 years. | | Australian Height Datum
(AHD) | A common national surface level datum corresponding approximately to mean sea level. | | Flood Affected Properties | Properties that are either encompassed or intersected by the Flood Planning Area (FPA). | | Floodplain | Area of land which is subject to inundation by floods up to and including the Probable Maximum Flood (PMF) event, that is, flood prone land. | | Flood Planning Area | The area of land that is shown to be in the Flood Planning Area on the Flood Planning Map. | | Flood Planning Map | The Flood Planning Map referred to in the Upper Lachian Loca Environmental Plan 2010, extracts of which are shown on Figures D1.1 D1.2, D1.3 and D1.4. | | Flood Planning Level
(FPL)
(General Definition) | The combinations of flood levels and freeboards selected for planning purposes, as determined in floodplain risk management studies and incorporated in floodplain risk management plans. | | Flood Planning Level
(FPL) | For land within the Flood Planning Area subject to Main Stream Flooding (MSF) in the four villages, the Flood Planning Level (FPL) is the level of the 100 year Average Recurrence Interval (ARI) flood event plus 500 mm freeboard. | | | For land within the Flood Planning Area subject to Minor Tributary Flooding (MTF) in the four villages, the FPL is the level of the 100 year ARI flood event minus 150 mm freeboard. | | | For land within the Flood Planning Area subject to Major Overland Flow (MOF) in the four villages, the FPL is the level of the 100 year ARI flood event minus 150 mm freeboard. | | | For areas outside the Flood Planning Area shown on the Flood Planning Map, the FPL is the level of the 100 year ARI flood event plus 500 mm freeboard. | | Flood Prone/Flood Liable
Land | Land susceptible to flooding by the PMF. Flood Prone land is synonymous with Flood Liable land. | | Floodway | Those areas of the floodplain where a significant discharge of water occurs during floods. They are often aligned with naturally defined channels. Floodways are areas that, even if only partially blocked, would cause a significant redistribution of flood flow, or a significant increase in flood levels. | FVFRMS_V1_AppD_[Rev
1.2].doc November 2016 Rev. 1.2 Page D-12 | TERM | DEFINITION | |---|---| | Flood Storage Area | Those parts of the floodplain that may be important for the temporary storage of floodwaters during the passage of a flood. Loss of flood storage can increase the severity of flood impacts by reducing natural flood attenuation. | | Freeboard | Provides reasonable certainty that the risk exposure selected in deciding a particular flood chosen as the basis for the FPL and MFL is actually provided. It is a factor of safety typically used in relation to the setting of floor levels, levee crest levels, etc. Freeboard is included in the FPL and MFL. | | Habitable Room | In a residential situation: a living or working area, such as a lounge room, dining room, kitchen, bedroom or workroom. In an industrial or commercial situation: an area used for offices or to store | | | valuable possessions susceptible to flood damage in the event of a flood. | | inner Floodpiain (Hazard
Category 1) | Comprises areas where factors such as the depth and velocity of flow, time of rise, isolation and evacuation difficulties mean that the land is unsuitable for some types of development. It includes areas of High and Low Hazard Floodway, Flood Storage, Flood Fringe, Intermediate Floodplain and Outer Floodplain areas. Erection of a buildings and carrying out of work not permitted; use of land, subdivision of land and demolition subject to State Environmental Planning Policies and Local Environmental Plan provisions. | | inner Floodplain (Hazard
Category 2) | Comprises areas of Low Hazard Floodway and Flood Storage areas where development other than Essential Community Facilities, Critical Utilities, Schools and Flood Vulnerable may be permitted provided it is capable of withstanding hydraulic forces and sited on the allotment to minimise adverse redirections of flow towards adjacent properties. Council may require a Flood Risk Report if it considers that the proposal has the potential to significantly affect flooding behaviour in adjacent properties. | | Intermediate Floodplain | For MSF, it is the strip of land between each side of the two Inner Floodplain zones and the line defining the indicative extent of flooding resulting from the occurrence of the 100 year ARI flood plus 500 mm (i.e. the FPA). | | | For MTF, it is the land two Inner Floodplain zones where the depth of inundation during the 100 year ARI storm event is greater than 150 mm. | | | For MOF, it is the land outside the High Hazard Floodway and Low Hazard Floodway / Flood Storage zones where the depth of inundation during the 100 year ARI storm event is greater than 150 mm. | | Local Drainage | Land on an overland flow path where the depth of inundation during the 100 year ARI storm event is less than 150 mm. | | Main Stream Flooding | The inundation of normally dry land occurring when water overflows the natural or artificial banks of a major stream; for the study area, the main streams are the Crookwell River and Kiamma Creek at Crookwell, Meadow Creek at Gunning, Collector Creek at Collector and Corroboree Creek at Taralga. For planning purposes, flooding along the Cullen Street Overland Flow Path at Crookwell has been assessed in the same way as flow in the channels of the Crookwell River and Kiamma. | | Major Overland Flow
(MOF) | Where the depth of overland flow during the 100 year ARI storm event is greater than 150 mm. | FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-13 | TERM | DEFINITION | |--|---| | Minimum Floor Level
(MFL)
(General Definition) | The combinations of flood levels and freeboards selected for setting the Minimum Floor Levels (MFL's) of future development located in properties subject to flood related planning controls. | | Main Stream and Minor
Tributary Minimum Floor
Level (MSMT MFL) | For properties subject to Main Stream and Minor Tributary Flooding (MSMTF) in the four villages, the Minimum Floor Level (MFL) is the level of the 100 year ARI flood event plus 500 mm freeboard. | | | Note that for areas outside the Flood Planning Area shown on the Flood Planning Map, the MSMT MFL is the level of the 100 year ARI flood event plus 500 mm freeboard. | | Major Overland Flow
Minimum Floor Level
(MOF MFL) | For properties subject to MOF in the four villages, the MOF MFL is the level of the 100 year ARI flood event plus 300 mm freeboard. | | (mor ne z) | Note that for areas outside the Flood Planning Area shown on the Flood Planning Map, the MOF MFL is the level of the 100 year ARI flood event plus 500 mm freeboard. | | Minor Tributary Flooding | The inundation of normally dry land occurring when water overflows the natural or artificial banks of a minor stream. For the study area, these are typically located in the rural areas which border the four villages. | | Outer Floodplain | This is defined as the land between the FPA and the extent of the PMF. | | Probable Maximum Flood
(PNF) | The largest flood that could conceivably occur at a particular location. Generally, it is not physically or economically possible to provide complete protection against this event. The PMF defines the extent of flood prone land, that is, the floodplain. | | | For the study area, the extent of the PMF has been trimmed to include depths greater than 150 mm. | ### D4. REFERENCES Lyall and Associates (2014a) "The Village of Crookwell Flood Study". Lyall and Associates (2014b) "The Village of Gunning Flood Study". Lyall and Associates (2014c) "The Village of Collector Flood Study". Lyall and Associates (2014d) "The Village of Taraiga Flood Study". Lyall and Associates (2016) "The Villages of Crookwell, Gunning, Collector and Taralga Floodplain Risk Management Study and Draft Plan". New South Wales Government (2005) "Floodplain Development Manual – The Management of Flood Liable Land". FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 ## ANNEXURE 1 LAND USE CATEGORIES | Essential
Community
Facilities | Critical Utilities and
Uses | Flood Vuinerable
Residential | Residential | Business, Commercial/Industrial & Rural Industry | Non-Urben and
Outbuildings | Residential
Subdivision | Minor Additions
(Residential) | |--------------------------------------|--------------------------------|---------------------------------|-----------------------|--|-------------------------------|---------------------------------|----------------------------------| | Development that | Telecommunication | Group home; Housing | Dwelling; Residential | Bulk Store; Bus depot; | Retail nursery; | Subdivision of land | | | may provide an | facilities; Public Utility | for aged or disabled | flat building; | Bus station; Car repair | Recreation area: | involving the | existing dwelling of not | | important contribution | Installation that may | persons; and Units for | Home industry: | stations; Club; | Roadside stall; | creation of new | | | to the notification and | cause pollution of | aged persons. | Boarding house; | Commercial premises | Outbuildings | alforments for | | | evacuation of the | waterways during | | Professional | (other than where | (Sheds, Garages) | residential | | | community during | flooding, or if affected | | consulting rooms; | referred to elsewhere); | up to 40 m² area. | purposes; | | | flood events; | during flood events | | | General store; Health | | Earthworks or filling | | | Hospitals; | would significantly | | | care professional | | operations covering | | | Institutions; Child | affect the ability of the | | | Hotel; Intensive | | 100 m ² or more than | | | care centres; | community to return | | | livestock keeping; | | 0.3 m deep. | | | Educational | to normal activities | | | Junkyard, Liquid fuel | | | | | establishments. | after the flood events. | | | depot; Motel; Motor | | | | | | Hazardous industry: | | | showroom; Place of | | | | | | Hazardous storage | | | Assembly (other than | | | | | | establishments. | | | essential community | | | | | | | | | facilities; Place of | | | | | | | | | public worship; Public | | | | | | | | | building (other than | | | | | | | | | essential community | | | | | | | | | facilities); Recreation | | | | | | | | | facility; Refreshment | | | | | | | | | room; Road transport | | | | | | | | | terminal; Rural | | | | | | | | | industry: Service | | | | | | | | | station; Shop; Tourist | | | | | | | | | facilities; Warehouse. | | | | The Villages of Crookwell, Gunning, Collector and Taralge Floodplain Risk Management Study and Draft Plan Appendix D - Draft Flood Policy Page D-16 # DEVELOPMENT CONTROLS MATRIX - MAIN STREAM AND MINOR TRIBUTARY FLOODING **ANNEXURE 2.1** | Managemeni
and Design | Evacuation /
Access | Affectation | Structural | Building
Components | Floor Level | | | |--------------------------|------------------------|-------------|------------|------------------------|-------------|----------------------------------|--------------------------------------| | nt 2.3 | 1 | | 2 | দ্ৰ 2 | _ | Essential Community Facilities | | | 12 | .
 | 22 | 2 | _ | Critical Utilities and Uses | | | 3
5 | 1 | | | | -1 | Flood Vulnerable Residential | | | | | | | | _ | Residential | uter F | | | | | | | _ | Business & Commercial/Industrial | Outer Floedplain | | | | | | | | Non-Urban and Outbuildings | | | | | | | | _ | Residential Sub-Division | | | | | | | | _ | Minor Additions (Residential) | | | 2,3 | _ | | 2 | 2 | _ | Essential Community Facilities | | | 2,3 | - | | N | 2 | - | Critical Utilities and Uses | | | σı | | | _ | _ | | Flood Vulnerable Residential | Intern | | | | | _ | | | Residential | Intermediate Floodplain | | 4 | | | _ | | _ | Business & Commercial/Industrial | E Floo | | | | | | | | Non-Urban and Outbuildings | dpiai | | | | | _ | - | - | Residential Sub-Division | | | o | | | _ | | | Minor Additions (Residential) | | | | | | | | | Essential Community Facilities | _ | | | | | | | | Critical Utilities and Uses | Inner Flood | | | | | | | | Flood Vulnerable Residential | | | 7 | _ | - | | :=: | _ | Residential | lain (F | | 4.7 | - | _ | | - | - | Business & Commercial/Industrial | lazaro | | 3,7 | -3 | _ | | | | Non-Urban and Outbuildings | Cate | | 1.7 | - | _ | | _ | -3 | Residential Sub-Division | plain (Hazard Category 2) | | 0 | -3 | _ | _ | | د | Minor Additions (Residential) | (3 | | | | | | | | Essential Community Facilities | 5 | | | | | | | | Critical Utilities and Uses | nar Fi | | | | | | | | Flood Vulnerable Residential | codpl | | | | | | | | Residential | ain (H | | | | | | | | Business & Commercial/Industrial | Dista | | 3,7 | | -3 | | | | Non-Urban and Outbuildings | Cates | | | | | | | | Residential Sub-Division | Inner Floodplain (Hazard Category 1) | | | | | | | | Minor Additions (Residential) | | FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 the Probable Maximum Flood See Notes over page: stopes adjacent to the aforementioned major creek systems. Collector Creek at Collector and Corroborse Creek at Taralga, while Minor Tributary Flooding applies for inundation of land along the minor watercourses which drain the relatively steep Main Stream Flooding applies for inundation of land bordering the Crookwell River, Klamma Creek and Cullen Street Overland Flow Path at Crookwell, Meadow Creek at Gunning, Unsuitable Land Use Not Relevant The Intermediate Floodplain is defined by the area between the two inner Floodplain zones and the Flood Planning Area (FPA). The Outer Floodplain is the area between the FPA and Page D-17 Lyall & Associates Page 190 FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Attachment 2.: Draft Floodplain Risk Management Plan and Study - Vol 1 # DEVELOPMENT CONTROLS MATRIX - MAIN STREAM AND MINOR TRIBUTARY FLOODING ANNEXURE 2.1 (CONT'D) ### Floor Level Floor levels to be equal to or greater than the Main Stream and Minor Tributary Flooding Minimum Floor Level (MSMTF MFL) (100 year ARI flood level plus 500 mm freeboard). **Building Components** - All structures to have flood compatible building components below the MSMTF MFL All structures to have flood compatible building components below PMF flood level (where PMF level is higher than the MSMTF MFL) - Structural Soundness Structure to be designed to withstand the forces of floodwater, debris and buoyancy up to the MSMTF MFL # Flood Affection in Adjacent Areas A Flood Risk Report may be required to demonstrate that the development will not increase flood hazard (see Item 7 Management and Design below) When assessing Flood Affectation the following must be considered: Structure to be designed to withstand forces of floodwater, debris and buoyancy up to PMF flood (where PMF level is higher than the MSMTF MFL) - Loss of conveyance capacity in the floodway or areas where there is significant flow velocity - Changes in flood levels and flow velocities caused by the afteration of conveyance of floodwaters ### Evacuation/ Access Reliable access for pedestrians or vehicles required in the event of 100 year AR(flood ## Management and Design - Applicant to demonstrate that potential developments as a consequence of a subdivision proposal can be undertaken in accordance with this Policy and the Plan Applicant to demonstrate that facility is able to continue to function in event of PMF - Where it is not practicable to provide floor levels to the MSMTF MFL, applicant is to provide an area to store goods at that level No external storage of materials which may cause pollution or be potentially hazardous during PMF - Applicant is to provide an area to store valuable equipment above the MSMTF MFL (level to be advised by Council) see Section D2.8 **ω 4 τυ το Γ** - Where it is not practicable to provide floor levels to the MSMTF MFL. Council may allow a reduction for minor additions to habitable areas see Section D2.11. - Flood Risk Report may be required prior to development of this nature in this area see Sections D2.16.2 and D2.16.3 # NOTE: THESE NOTES ARE TO BE READ IN CONJUNCTION WITH REMAINDER OF THE FLOOD POLICY, IN PARTICULAR CHAPTER 2 Page D-18 Lyall & Associates The Villages of Crookwell, Gunning, Collector and Taraiga Floodplain Risk Management Study and Draft Plan Appendix D - Draft Flood Policy Lyall & Associates # DEVELOPMENT CONTROLS MATRIX - MAJOR OVERLAND FLOW **ANNEXURE 2.2** | | Management and Design | Evacuation /
Access | Flood
Affectation | Structural
Soundness | Building
Components | Floor Level | | | |---------------------|-----------------------|------------------------|----------------------|-------------------------|------------------------|-------------|----------------------------------|------------------------| | Ì | 2,3 | | | N | ν, | 12 | Essential Community Facilities | | | | 2,3 | | | 2 | N | 2 | Critical Utilities and Uses | | | | υı | _ | | | | N | Flood Vulnerable Residential | ဥ | | | | | | | | 2 | Residential | Outer Floodplain | | | | | | | | Ŋ | Business & Commercial/Industrial | odpi | | | | | | | | | Non-Urban and Outbuildings | <u>a</u> | | No. | | | | | | 2 | Residential Sub-Division | | | Not Relevant | | | | | | N | Minor Additions (Residential) | | | | 2,3 | | | N | N | N | Essential Community Facilities | l i | | 0 | 2,3 | _ | | 2 | 2 | 12 | Critical Utilities and Uses | | | | υn | | | _ | | 12 | Flood Vulnerable Residential | nterm | | | | | | _ | | N | Residential | ediat | | Ung | 4 | | | | _ | 12 | Business & Commercial/Industrial | e Floo | | Unsuitable Land Use | | | | | | | Non-Urban and Outbuildings | ntermediate Floodplain | | Land Us | _ | | | _ | _ | N | Residential Sub-Division | 3 | | 5 | 0 | | | _ | _ | N | Minor Additions (Residential) | | | | | | | | | | Essential Community Facilities | | | | | | | | | | Critical Utilities and Uses | | | | | | | | | | Flood Vulnerable Residential | 1 | | | 7 | | _ | | | | Residential | 100g | | | 4.7 | | _ | _ | - | _ | Business & Commercial/Industrial | ood Storag | | | | | | | | | Non-Urban and Outbuildings | a duty | | | 1.7 | | _ | | | _ | Residential Sub-Division | | | | 60 | | _ | | | - | Minor Additions (Residential) | | | | | | | | | | Essential Community Facilities | | | | | | | | | - | Critical Utilities and Uses | | | | | | | | | | Flood Vulnerable Residential | High | | | | | | | | | Residential | High Hazard Floodway | | | | | | | | | Business & Commercial/Industrial | rd Flo | | | 3.7 | | _ | | | | Non-Urban and Outbuildings | ewbo | | | 1 | 1 | | | | | Residential Sub-Division | | | | 6.7 | | | _ | | | Minor Additions (Residential) | | Floodplain is the area between the FPA and the Probable Maximum Flood See Notes over page Major Overland Flow applies for inundation of land along the various flow paths which are present in the villages of Crookwell, Gunning, Collector and Taralga. The Intermediate Floodplain is defined by the area between the High Hazard Floodway and Low Hazard Floodway / Flood Storage zones and the Flood Planning Area (FPA). The Outer The Villages of Crookwell, Gunning, Collector and Taraige Floodplain Risk Management Study and Draft Plan Appendix D - Dreft Flood Policy # DEVELOPMENT CONTROLS MATRIX - MAJOR OVERLAND FLOW **ANNEXURE 2.2 (CONT'D)** ### Floor Level - Floor levels to be equal to or greater than the MOF MFL (100 year ARI flood level plus 300 mm freeboard). Floor levels to be equal to or greater than the MOF MFL (100 year ARI flood level plus 300 mm freeboard) or 300 mm above natural surface levels, whichever is the higher. **Building Components** Structural Soundness Structure to be designed to withstand the forces of floodwater, debris and buoyancy up to MOF MFL All structures to have flood compatible building components below PMF flood level (where PMF level is higher than MOF MFL) All structures to have flood compatible building components below MOF MFL Flood Affection in Adjacent Areas Residential development may be "deemed to comply" provided it conforms with the requirements of Section D2.16. A Flood Risk Report may be required to demonstrate that the development will not increase flood hazard (see Item 7 Management and Design below) Structure to be designed to withstand forces of floodwater, debris and buoyancy up to PMF flood (where PMF level is higher than MOF MFL) - When assessing Flood Affectation the following must be considered: - Loss of conveyance capacity in the floodway or areas where there is significant flow velocity - Changes in flood levels and flow velocities caused by the alteration of conveyance of floodwaters ## Evacuation/ Access Reliable access for pedestrians or vehicles required in the event of 100 year ARI flood ## Management and Design - Applicant to demonstrate that facility is able to continue to function in event of PMF. Applicant to demonstrate that potential developments as a consequence of a subdivision proposal can be undertaken in accordance with this Policy and the Plan - No external storage of materials which may cause pollution or be potentially hazardous during PMF - Where it is not practicable to provide floor levels to MOF MFL, applicant is to
provide an area to store goods at that level Applicant is to provide an area to store valuable equipment above MOF MFL (level to be advised by Council) – see Section D2.8 - Where it is not practicable to provide floor levels to MOF MFL, Council may allow a reduction for minor additions to habitable areas see Section D2.11. - Flood Risk Report may be required prior to development of this nature in this area see Sections D2.16.2 and D2.16.3. # NOTE: THESE NOTES ARE TO BE READ IN CONJUNCTION WITH REMAINDER OF THE FLOOD POLICY, IN PARTICULAR CHAPTER 2. FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-20 ### **ANNEXURE 3A** ### **GENERAL BUILDING MATTERS** ### Electrical and Mechanical Equipment For dwellings constructed on land to which this policy applies, the electrical and mechanical materials, equipment and installation should conform to the following requirements. ### Main Power Supply Subject to the approval of the relevant authority the incoming main commercial power service equipment, including all metering equipment, shall be located above the MFL. Means shall be available to easily isolate the dwelling from the main power supply. ### Wiring All wiring, power outlets, switches, etc, should be, to the maximum extent possible, located above the MFL. All electrical wiring installed below this level should be suitable for continuous underwater immersion and should contain no fibrous components. Earth leakage circuit breakers (core balance relays) must be installed. Only submersible type splices should be used below the MFL. All conduits located below the relevant designated flood level should be so installed that they will be self-draining if subjected to flooding. ### Equipment All equipment installed below or partially below the MFL should be capable of disconnection by a single plug and socket assembly. ### Reconnection Should any electrical device and/or part of the wiring be flooded it should be thoroughly cleaned or replaced and checked by an approved electrical contractor before reconnection. ### **Heating and Air Conditioning Systems** Where viable, heating and air conditioning systems should be installed in areas and spaces of the house above the MFL. When this is not feasible, every precaution should be taken to minimise the damage caused by submersion according to the following guidelines: ### n Fue Heating systems using gas or oil as a fuel should have a manually operated valve located in the fuel supply line to enable fuel cut-off. ### ii) Installation The heating equipment and fuel storage tanks should be mounted on and securely anchored to a foundation pad of sufficient mass to overcome buoyancy and prevent movement that could damage the fuel supply line. All storage tanks should be vented to the MFL. ### iii) Ducting All ductwork located below the MFL should be provided with openings for drainage and cleaning. Self-draining may be achieved by constructing the ductwork on a suitable grade. Where ductwork must pass through a watertight wall or floor below the relevant flood level, a closure assembly operated from above the MFL should protect the ductwork. ### Sewer All sewer connections to properties in flood prone areas are to be fitted with reflux valves. FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page **D-21** ### **ANNEXURE 3B** ### FLOOD COMPATIBLE MATERIALS | Building Component | Flood Compatible
Material | Building Component | Flood Compatible
Material | | |-------------------------------------|--|--------------------------------------|---|--| | Flooring and Sub Floor
Structure | Concrete siab-on- ground monolith construction. Note: ciay filling is not permitted beneath slab-on-ground construction which could be inundated. Pier and beam construction or Suspended reinforced concrete slab | Deors | Solid panel with waterproof adhesives Flush door with marine ply filled with closed cell foam Painted material construction Aluminium or galvanised steel frame | | | Floor Covering | Clay tiles Concrete, precast or in situ Concrete tiles Epoxy formed-in-place Mastic flooring, formed-in-place Rubber sheets or tiles with chemical set adhesive Silicone floors formed-in-place Vinyl sheets or tiles with chemical-set adhesive Ceramic tiles, fixed with mortar or chemical set adhesive Asphalt tiles, fixed with water resistant adhesive Removable rubber-backed carpet | Wall and Celling
Linings | Brick, face or glazed Clay tile glazed in waterproof mortar Concrete Concrete block Steel with waterproof applications Stone natural solid or veneer, waterproof grout Glass blocks Glass Plastic sheeting or wall with waterproof adhesive | | | Wall Structure | Solid brickwork, blockwork, reinforced, concrete or mass concrete | Insulation | Foam or closed cell types | | | Win dows | Aluminium frame with
stainless steel or brass
rollers | Nails, Bolts, Hinges
and Fittings | Galvanised Removable pin hinge | | FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-22 ### ANNEXURE 4 DEVELOPMENT APPLICATION REQUIREMENTS ### Step 1 Check with Council staff to see whether or not the proposal: - > Is located on Flood Prone Land (Based on initial assessment of the extent of flood affectation and flood levels (refer from Section D1.4 for details)). - > Is permissible in the Flood Hazard zone and determine the MFL for the particular category of land use. - Note: an existing site survey (see Section D2.16.1 of the Policy) is to accompany development proposals to confirm the flood affectation of the allotment and its location within the flood risk zoning system. ### Step 2 <u>Plans</u> - A Development Application should include the following plans showing the nature of the proposed development and its extent within the allotment: - A locality plan identifying the location of the property. - Plan of the existing site layout including the site dimensions (in metric), site area, contours (0.20 m intervals), existing trees, other natural features, existing structures, north point, location of building on adjoining properties (if development involves a building), floor plans located on a site plan, roof plan, elevations and sections of the proposed building, finished levels of floors, paving and landscaped areas, vehicular access and parking. - Plans should indicate: - a) The existing ground levels to Australian Height Datum around the perimeter of the proposed building; and - b) The existing or proposed floor levels to Australian Height Datum. - Minor additions to an existing dwelling must be accompanied by documentation from a registered surveyor confirming existing floor levels. - In the case of subdivision, four (4) copies of the proposed site layout showing the number of lots to be created (numbered as proposed lot 1, 2, 3 etc), the proposed areas of each lot in square metres, a north point, nearest roads and the like. ### Council require plans presented on A3 sheets as a minimum ### A scale of 1:200 is recommended for site plans Extent of Cut and Fill — All areas subject to cut and fill require the depths of both to be shown as well as the measures proposed to retain both. Applications shall be accompanied by a survey plan (with existing and finished contours at 0.20 m intervals) showing relative levels to Australian height datum. <u>Vegetation Clearing</u> – Landscaping details including a description of trees to be removed existing and proposed planting, retaining walls, detention basins, fences and paving. Stormwater Drainage – Any existing and all proposed stormwater drainage to be indicated on the site plan. FVFRMS_V1_AppD_[Rev 1.2].doc November 2016 Rev. 1.2 Page D-23 Job No. DN374 File FVFRMS_V2_Figures_[Rev 1 2] doox Date November 2018 Rev No. 1.2 # **UPPER LACHLAN SHIRE COUNCIL** # THE VILLAGES OF CROOKWELL, GUNNING, COLLECTOR AND TARALGA FLOODPLAIN RISK MANAGEMENT STUDY AND DRAFT PLAN ## **NOVEMBER 2016** **VOLUME 2 - FIGURES AND APPENDICES** # DRAFT REPORT FOR PUBLIC EXHIBITION 2.11 2.10 2.9 2.8 2.7 2.6 Gunning Time of Rise of Floodwaters Gunning indicative Depths of Above-Ground and Above-Floor Inundation -- 100 year ARI Crookwell Indicative Depths of Above-Ground and Above-Floor Inundation - PMF (2 Sheets) Difference in Peak Flood Levels Between PMF and Extreme Flood at Crookwell (2 Sheets) Collector indicative Depths of Above-Ground and Above-Floor Inundation - 100 year ARI Gunning Indicative Depths of Above-Ground and Above-Floor inundation - PMF Difference in Peak Flood Levels Between PMF and Extreme Flood at Gunning Collector Time of Rise of Floodwaters (2 Sheets) 2.5 24 13 ### LIST OF FIGURES <u>:</u> | Difference in Peak Flood I evals Between PMF and Extreme Flood at Crookwell (2 Sheets) | Crookwell Time of Rise of Floodwaters (2 Sheets) | Crockwell Indicative Depths of Above-Ground and Above-Floor Inundation - 100 year ARI (2 Sheets) | Taralga Stormwater Drainage System | Collector Stormwater Drainage System | Gunning Stormwater Drainage System | Crockwell Stormwater Drainage System | Study Location Plan | |--|---|--
---|--------------------------------------|------------------------------------|--------------------------------------|----------------------------------| | 2.35 | 2,34 | | 2.33 | 2.32 | 2.31 | 2.30 | 2.29 | | 2.35 Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Collector - 100 year ARI | Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Gunning - 100 year ARI | (2 Sheets) | Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Crookwell – 100 year ARI | Taralga LEP - 2010 Zoning | Collector LEP - 2010 Zoning | Gunning LEP - 2010 Zoning | 2.29 Crookwell LEP - 2010 Zoning | | 2.37 | Collector LEP - 2010 Zoning | |------|---| | 2.32 | Taralga LEP - 2010 Zoning | | 2.33 | Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Crockwell – 100 year AR | | | (2 Sheets) | | 2 | Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Gunning - 100 year ARI | | 2.35 | Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Collector - 100 year ARI | | 2.36 | Potential Impact of Future Urbanisation on Flooding and Drainage Patterns at Taraiga – 100 year ARI | | 2.37 | Potential Impact of Todkill Park Dam Failure on Flooding Behaviour – 100 year ARI | | 2.38 | Potential Impact Removal of Cullen Street Dam has on Flooding Behaviour - 100 year ARI | | 2.39 | Potential Impact of Cullen Street Dam Failure on Flooding Behaviour – 100 year ARI | | 3.1 | Crookwell Flood Emergency Response Planning Classifications - 100 year ARI (2 Sheets) | | 3.2 | Crookwell Flood Emergency Response Planning Classifications - PMF (2 Sheets) | | ü | Gunning Flood Emergency Response Planning Classifications – 100 year ARI | | 4 | Gunning Flood Emergency Response Planning Classifications — PMF | | 3.5 | Collector Flood Emergency Response Planning Classifications – 100 year ARI | | 3.6 | Collector Flood Emergency Response Planning Classifications – PMF | | | | 3.8 2.23 222 2.2 2.20 2.19 2.18 2.17 2.16 2.15 2.14 2.13 Gunning Extents of Inundation and Location of Critical Infrastructure Flood Hazard and Hydraulic Categorisation of Floodplain at Crookwell (2 Sheets) Taralga Extents of Inundation and Location of Critical Infrastructure Collector Extents of Inundation and Location of Critical Infrastructure Flood Hazard and Hydraulic Categorisation of Floodplain et Taralga Flood Hazard and Hydraulic Categorisation of Floodplain at Collector Flood Hazard and Hydraulic Categorisation of Floodplain at Gunning Crockwell Extents of Inundation and Location of Critical Infrastructure (2 Sheets) Difference in Peak Flood Levels Between PMF and Extreme Flood at Taralga Taraiga Time of Rise of Floodwaters Taralga Indicative Depths of Above-Ground and Above-Floor Inundation – PMF Collector Indicative Depths of Above-Ground and Above-Floor Inundation - PMF Difference in Peak Flood Levels Between PMF and Extreme Flood at Collector Taralga Indicative Depths of Above-Ground and Above-Floor inundation - 100 year ARI The Villeges of Crookwes, Gunning, Collector and Taraiga Floodplain Risk Managament Study and Draft Plan FLOOD DAMAGES Ordinary Meeting of Council held on 20 April 2017 ## LIST OF FIGURES (APPENDIX B) Gunning - Damage - Frequency Curves and Cumulative Flooded Properties versus Depth of Inundation Diagram - 100 year ARI (Nominal Flood Levels Case) Collector - Damage - Frequency Curves and Cumulative Flooded Properties versus Depth of Inundation Diagram -- 100 year ARI (Nominal Flood Levels Case) Crookwell - Damage - Frequency Curves and Cumulative Flooded Properties versus Depth of Inundation Diagram - 100 year ARt (Nominal Flood Levels Case) Taraiga - Damage - Frequency Curves and Cumulative Flooded Properties versus Depth of Inundation Diagram - 100 year ARI (Nominal Flood Levels Case) CROOKWELL DAMAGE - FREQUENCY CURVES AND CUMULATIVE FLOODED PROPERTIES VERSUS DEPTH OF INUNDATION DIAGRAM 100 YEAR ARI (NOMINAL FLOOD LEVELS CASE) FLOODPLAIN RISK MANAGEMENT STUDY AND PLAN ASSESSMENT OF POTENTIAL FLOOD MODIFICATION MEASURES APPENDIX C C4.2 2 04.3 ## LIST OF FIGURES (APPENDIX C) | (A) | | |--|--| | 2 | | | 3 | | | Ō | | | 2 | | | ğ | | | ō. | | | 70 | | | 8 | | | 짂 | | | ğ | | | ¥ | | | 9 | | | ğ | | | | | | Ō | | | 8 | | | Ž | | | ≝ | | | - 1 | | | ٠. | | | ġ | | | 100 y | | | - 100 year | | | - 100 year Af | | | Stream Clearing on Peak Flood Levels at Crookwell - 100 year ARI | | | - Ω.3 2.4 $\frac{7}{3}$ Impact of Goulburn Street Trunk Drainage Upgrade on Peak Flood Levels at Crookwell -- 100 year ARI Impact of King Road Drainage Upgrade on Peak Flood Levels at Crookwell impact of - Impact of Cullen Street Detention Basin on Peak Flood Levels at Crookwell C3.5 C3.6 - Impact of Grange Road Detention Basin on Peak Flood Levels at Crookwell - Impact of Combined Detention Basin Strategy on Peak Flood Levels at Crookwell Impact of Combined Detention Basin Strategy and Goulburn Street Trunk Drainage Upgrade on Peak Flood Levels at Crookwell – 100 year ARI - Impact of Saleyards Road Detention Basin on Peak Flood Levels at Crookwell Impact of Biala Street Drainage Upgrade on Peak Flood Levels at Gunning - Impact of Cullavin Street Levee Option 1 on Peak Flood Levels at Gunning - Impact of Cullavin Street Levee Option 2 on Peak Flood Levets at Gunning - Impact of Collector Bypass Channel on Peak Flood Levels at Collector Impact of George Street Drainage Upgrade on Peak Flood Levels at Collector impact of Orchard Street Drainage Upgrade on Peak Flood Levels at Taraiga <u>8</u> 05.2 05.2 Lyali & Associates The Villages of Crookwell, Gunning, Collector and Taraigs Floodplain Risk Management Study and Draft Plan DRAFT FLOOD POLICY ## LIST OF FIGURES (APPENDIX D) Extract of Flood Planning Map Showing Extent of Flood Planning Area at Crookwell (Sheets 1 and 2) Extract of Flood Planning Map Showing Extent of Flood Planning Area at Gunning Extract of Flood Planning Map Showing Extent of Flood Planning Area at Collector Extract of Flood Planning Map Showing Extent of Flood Planning Area at Taralga Crockwell Development Controls Matrix Map (Sheets 1 and 2) Gunning Development Controls Matrix Map Collector Development Controls Matrix Map Taralga Development Controls Matrix Map Crockwell Flood Hazard Map (Sheets 1 and 2) D1.11 Collector Flood Hazard Map D1.12 Taraiga Flood Hazard Map Gunning Flood Hazard Map FLOOD DATA FOR INDIVIDUAL ROAD AND PEDESTRIAN CROSSINGS APPENDIX E | ~ | | | |---|--|--| | i | | | | = | | | | ø | | | | > | | | | 3 | | | | 5 | | | | í | | | | ÷ | | | | ç | | | | | | | | Refer Figures 3.1 and 3.2 for location of road crossings at Cookwell Refer Figures 3.3 and 3.4 for location of road crossings at Guraing. Refer Figures 3.5 and 3.6 for location of road crossings at Collector. | TA_X2 | TA_X1 | CO_X3 | 84_00
84_00 | CO_X1 | en_xa | GU_XZ | SU_XI | CR_X8 | CR_X8 | CR_X7 | CR_X6 | CR_X5 | CR_X4 | CR_X3 | CR_X2 | CR_X1 | | Crossing | | |--|------------------|----------------------------------|-----------------|--------------------------|---------------|-----------------------------------|--------------------------|----------------|--------------|---------------------------------|---------------|-------------|--------------------------|-------------|------------------|--------------------------------------|-----------------|----------|---|---------------| | | 1 | Teralga(4) | | Collector ⁽³⁾ | | | Gunning(2) | • | | | | | Crapkwali ⁽¹⁾ | | | | | | Village | | | | Corrobarse Creek | Tributary of
Corroborse Crack | | Callector Creek | | | Mendow Creek | | | Culien Street Overland Flowpath | | | Kinma Creek | | | Crookwell River | | | Watercourse | | | | Walsh Street | Taralga Road | Federal Highway | Federal Highway | Murray Street | Yass Street
(Jack Shaw Bridge) | Lerida Street (Causeway) | Hume Highway | Goulbum Lane | Wade Street | Cullen Street | Laggan Road | Saleyards Road | Harley Road | Carington Street | Brooklends Road
Pedestrian Bridge | McDonald Street | | Location | | | | 828.4 | 878.6 | 689.8 | 690.5 | 689 5 | 581.9 | 659.6 | 588.5 | 869.6 | 697.5 | 903.8 | 876.7 | 881.7 | 888.3 | 876.0 | 875.7 | 880.6 | | Road Level
(m AHD) | | | | | 1:16 | | | 4:15 | | 1-16 | | 1:46 | 1:16 | 1:30 | | 2:45 | 2:15 | 4:16 | 1:45 | 1:45 | (hr:min) | Time to
Commencement
of Overtopping | | | | 3:30 | 3:16 | 7:45 | 7:30 | 7:00 | 6:30 | 5:30 | 51:10
61:10 | 3:15 | 3:46 | 3:45 | 4:45 | 4:30 | 4:15 | 4:45 | 4:45 | 4:45 | (hr:min) | Time to
Flood Peak | 20 year ARI | | | 1 | 0.3 | | ¥ | 0.3 | | 1.6 | | 0.3 | 0.0 | 0.2 | | 0,4 | 0.1 | 2 | 5 | 8.0 | 3 | Maximum
Depth of
Inundation | | | | 1:15 | 1:00 | | - | 2:00 | ŀ | 0:45 | | 0:30 | 0:30 | 1:00 | 2:00 | 1:30 | 1:15 | 1345 | 0:46 | 1:00 | (hramin) | Time to
Commencement
of Overtopping | | | | 130 | 1:46 | 6:15 | 6:16 | 6:00 | 4:46 | 43/6 | 4:30 | 2:00 | 2:16 | 2:00 | 3:16 | 3:00 | 2:00 | 3:16 | 3:15 | <u>a:</u> | (hramin) | Time to
Flood Peak | 100 year ARI | | | 0.3 | 0.4 | | = | 0.7 | | 2.1 | | 0.8 | 0,4 | 0.3 | 0.3 | 8.0 | 0.4 | 8.0 | j.
De | 1,2 | (m) | Maximum
Depth of
Inundation | | | | 0:15 | 0:30 | 2:00 | 1:30 | 0:30 | 0:46 | 0:16 | 0:45 | 0:15 | 0:15 | D:16 | 0:30 | 0:16 | 0:15 | 0:30 | 0:15 | 0:15 | (hr:min) | Thrue to Contraction of Overtopping | | | | 1:00 | 1:00 | 4:15 | 4:15 | 4:15 | 2:45 | 2:45 | 2:15 | 1:00 | 0:46 | 0:46 | 2:00 |
1:15 | 1:00 | 2:00 | 2;00 | 2:00 | (hramin) | Time to
Flood Peak | Extreme Flood | | | 2.5 | 1.0 | 0.8 | = | 3.4 | Ø.5 | 8.0 | 2.5 | 2,9 | 1,4 | 1.3 | 6.7 | 3,8 | 23 | 6.3 | 8.8 | £ | 3 | Maximum
Depth of
Inundation | | # TABLE E1 TABLE E1 TABLE E1 The Villages of Crookwell, Gunning, Collector and Taraba Floodplain Risk Management Study and Dreft Plan vpril 2017 #### © 2017 ROSS Planning Pty Ltd This document may only be used for the purpose for which it was commissioned and in accordance with the terms of engagement for the commissions. Unauthorised use of this document in any form whatsoever is prohibited. This report has been prepared by: ROSS Planning Pty Ltd ABN 32 508 029 959 Upper floor, 63 Bay Terrace Wynnum QLD 4178 PO Box 5660 Manly QLD 4179 Telephone: (07) 3901 0730 Fax: (07) 3893 0593 # Table of contents | 1.0 Executive summary | ŧ | 6.0 Prioritisation of works | |---|----|--| | 2.0 Introduction | 3 | 6.1 Prioritisation criteria | | 3.0 Participation trends | 5 | 6.2 Prioritisation and costing and projects | | 4.0 Community engagement summary | 9 | 7.0 Strategic recommendations | | 5.0 Analysis of the existing situation and future network | 13 | 8.0 Implementation plan | | 5.1 Bigga's existing network | 15 | 8.1 Resources | | 5. i. i Bigga's future network | 17 | 8.2 Key partnerships | | 5.2 Binda's existing network | 19 | 8.3 Funding opportunities | | 5.2.1 Binda's future network | 21 | 8.4 Promotion plan | | 5.3 Collector's existing network | 23 | Appendix | | 5.3.1 Collector's future network | 25 | One - Definitions | | 5.4 Crookwell's existing network | 27 | Two - Document review | | 5.4.1 Crookwell's future network | 29 | Three - Facility trends | | 5.5 Dalton's existing network | 33 | Path classification and design st | | 5.5.1 Dalton's future network | 35 | Lighting End-of-trip facilities | | 5.6 Grabben Gullen's existing network | 37 | Cycling and shared path crossing Pedestrian crossings | | 5.6.1 Grabben Gullen's future network | 39 | - Signage | | 5.7 Gunning's existing network | 41 | | | 5.7.1 Gunning's future network | 43 | | | 5.8 Laggan's existing network | 45 | | | 5.8.1 Laggan's future network | 47 | | | 5.9 Taralga's existing network | 49 | | | 5.9.1 Taralga's future network | 51 | | | 5.10 Tuena's existing network | 53 | | | 5. I O. I Tuena's future network | 55 | | | | | | # 1.0 Executive summary The Upper Lachlan Shire is located on the top of the Great Dividing Range, within the Southern Tablelands of New South Wales. The Shire covers 7,102km2 and is well known for its wool and potato production, with tourism emerging as relatively new industry. The Shire is home to 7,193 (2011 ABS) people over ten main towns and villages; Bigga, Binda, Collector, Crookwell, Dalton, Grabben Gullen, Gunning, Laggan, Taralga and Tuena. Crookwell is a main urban centre of the Shire which is home to 2,507 of its residents. The Shire has a high car dependency, with public transport limited to the Gunning rail service and the Crookwell Bus Service (restricted to around Crookwell, and from Crookwell to Goulburn). School bus services operate across the major urban areas of the Shire. Upper Lachlan has a higher percentage of people walking to work in comparison with Regional NSW and Australia, however a lower percentage of people cycling to work than the averages for regional NSW and Australia. The Shire has a modest network of footpaths across its larger towns and villages, servicing a number of key services and destinations. The majority of the existing pathway network within the Shire is ageing, however a number of recent pathway developments in the towns of Gunning and Crookwell are providing safe and attractive places for walkers and cyclists. The supporting infrastructure for the pathway network is also evolving, with the recent addition of seating and amenities in some locations. The opportunity exists for Council to enhance the existing network through an ongoing program of footpath maintenance and upgrades, development of new connections to key destinations, as well as supporting facilities such as signage and seating. The Upper Lachlan Shire Pedestrian Access Mobility Plan and Bike Plan (the Plan), sets Council's strategic direction and framework to establish a pedestrian and bicycle friendly environment within the Local Government Area over the next 5 to 10 years. The Plan builds on the Upper Lachlan Shire Council PAMP and Bike Plan (2005), which proposed a number of actions designed to encourage and support walking and cycling in the Shire. The PAMP and Bike Plan have been written as a combined document so as to address both the walking and cycling needs of a wide range of users including school children, seniors, recreational users, commuters, people with a disability or limited mobility, as well as visitors to the Shire. The purpose of the PAMP is to ensure thorough planning for pedestrians occurs via a comprehensive strategic action plan to develop subsequent policies and develop facilities. The purpose of developing the Bike Plan is for Council to deliver cycling infrastructure in a coordinated and strategic manner. The PAMP and Bike Plan will assist Council in securing funding for the implementation of walking and cycling infrastructure, such as the NSW Government's Walking Communities Program, Priority Cycleways, Cycling Towns and Connecting Centre programs. The Plan will guide Council in its application for grant funding, allocation of annual funds for maintenance and capital projects, as well as providing a sound communication tool to the community in its priorities for walking and cycling. Upper Luchian Shire Council # 1.1 Upper Lachlan walking and cycling environment and opportunities A number of infrastructure and behaviour change opportunities and recommendations have been made to improve connections within each town and to provide more opportunities to walk and cycle as part of every day activity. Given the limited funds available to resource the Plan, it has targeted improvements to those with the greatest benefit and community support across the Shire. #### Strategic directions To achieve the objectives of the Upper Lachlan PAMP and Bike Plan, a number of strategic recommendations have been identified. They are: | Conserve existing participation and
encourage growth in participation | Increase accessibility within towns and vidages | |--|--| | Council staff as leaders/walking and cycling ambassadors | Development of supporting walking
and cycling infrastructure | | School education programs and skill development | Awareness and promotion of the network | | Paths linking key destinations | Development of an accessible services guide | | | encourage growth in particiation Council staff as leaders,/walking and cycling ambassadors School education programs and skill development | These strategic directions are outlined further on page 61 of this Plan. fied at ion Acress Mobility Plan (RAMP, on 1 Bill e Han # 2.0 Introduction The Upper Lachlan PAMP and Bike Plan aims to provide a framework for the development and coordination of pedestrian and cycling facilities to meet the needs of the community. The Plan identifies opportunities to improve the existing network and encourage more people to walk and cycle as part of an active and healthy lifestyle. In order to ensure that the pedestrian and cycle network is relevant for the each town and village, a thorough process has been undertaken in order to understand the community's needs: understanding the community and stakeholders needs identifying and mapping key destinations understanding travel behaviours and use patterns understanding the types of pedestrians and cyclists audit of the existing network including its legibility, condition, gaps in the network and associated infrastructure such as signage and supporting facilities □ barriers to pedestrains and cyclists The PAMP and Bike Plan addresses the towns of Bigga, Binda, Collector, Crookwell, Dalton, Grabben Gullen, Gunning, Laggan, Taralga and Tuena. Due to the spatial distribution of each town across the Shire, towns have been assessed on an individual basis, rather than the Shire as a whole. #### 2.1 Vision The vision for the Plan is: To provide a network of safe and accessible pathways and their supporting infrastructure for both pedestrians and cyclists. Unking key destinations within towns as well as providing residents and risitors with apportunities for recreation and exercise. The development of the PAMP and Bike Plan for the Upper Lachlan Shire has been built on a sound understanding of the local community and their preferences, the local environment including the key services and destinations, as well as the existing pedestrian and cycling network. #### 2.2 Objectives of the Plan | Ine | e key objectives for the PAMP and Bike Plan are to: | |-----|--| | | Enhance and improve the pedestrian and cycling network through infrastructure provision that addresses the | | | needs and abilities of all types of pedestrians and cyclists | | | Collective infrastructure and behavioural initiatives that remove impediments to walking and cycling, particularly | | | for the youth and aged | | | | | | Complement existing and proposed tourist attractions throughout the Shire and adjoining local government | | | areas | | | | | | Prioritise improvements which can be realistically implemented with potential sources of funding identified - a
| | | progressive level of investment | | | Ensure pedestrian and cycling facilities are managed and maintained to high quality standards and in | | | accordance with Council's asset management plans and service level benchmarks. | Perfesuran Arcess of All The Telephone Perfect # 3.0 Participation trends Understanding participation trends at a national and state level can assist in the future planning of infrastructure, supporting facilities, and programs. # 3.1 Walking participation #### Walking for recreation/exercise As can be seen from the Australian data for walking for recreation/exercise, there is little difference in trends between 2005-06 and 2011-12. However, the latest survey in 2013-14 reveals a significant decrease in the percentage of people walking for recreation or exercise. Table 1. Walking for recreation/exercise | PUDIC 1, TYUNG | ig for secredar |)II) EXCI U3C | | | |----------------|-----------------|---------------|--------------|---------| | | | Participation | on (%, Aus.) | | | | 2005-06 | 2009-10 | 2011-12 | 2013-14 | | By gender | | | | | | Males | 16.5 | 15.6 | 16.5 | 13.6 | | Females | 32.8 | 30.0 | 30.4 | 24.7 | | By age | | | | | | 15 to 17 | 6.8 | 6.3 | 6.3 | | | 18 to 24 | 10.8 | 10.4 | 10.8 | - | | 25 to 34 | 20.7 | 15.8 | 16.3 | - | | 35 to 44 | 25.7 | 23.7 | 23.5 | - | | 45 to 54 | 30.7 | 30.2 | 31.0 | | | 55 to 64 | 34.8 | 34.4 | 36.3 | | | 65+ | 29.1 | 26.7 | 27.5 | - | | Total | 24.7 | 22.9 | 236 | 19.2 | | | | | | | #### Walking for transport The table below displays information collected in the 2006 and 2011 Australian Censuses for walking as a method of journey to work. Analysis of the data shows that the Upper Lachlan Shire has a higher percentage of people walking to work in comparison with Regional NSW and Australia. However, the percentage of those walking to work has fallen between 2006 and 2011, indicating a preference to use other methods of transport (in particular driving). Table 2. Walking for transport | Upper L | | Regiona | INSW | Austr | alia | |---------|------|---------|------|-------|------| | 2006 | 2011 | 2006 | 2011 | 2006 | 2011 | | 5.5 | 47 | 47 | 41 | 4.0 | 3 7 | As time pressures increase in people's lives, walking for transport can be a great way to exercise and keep fit whilst travelling to a destination. #### Children walking to school According to the National Heart Foundation, the number of children walking to school has halved over the last 40 years. The Short Report of the NSW Health Schools Physical Activity and Nutrition Survey (SPANS) conducted in 2004 shows an even greater decrease in both walking and cycling for students in Years 8 and 10 (see below). Figure 1. Rates of Year 8 children walking to school in 1985 and 2004 (SPANS) Figure 2. Rates of Year 10 children walking to school in 1985 and 2004 (SPANS) It is likely that these rates are influenced by an increase in the distances present for children to travel to school (in particular high school), which may necessitate other modes of transport including driving and public transport. However, notwithstanding these possibilities the figures are concerning and show the major downward trend of active transport among school students. Lifelong transport habits can be formed in childhood and encouraging walking and cycling among students of all ages should be a major consideration for all policy and plan makers. Upper Lacht in Shire Council Move it:Australia's healthy transport options (National Heart Foundation Australia, 2014) # 3.2 Cycling participation The National Cycle Strategy aims to double participation rates in cycling by Australians between 2011 and 2016. To measure this performance, a biennial National Cycling Participation Survey is conducted. Between 2011 and 2015, cycling participation rates have been fairly constant at a state level, however, changes can be seen in regional NSW¹. Rates decreased significantly in 2013 and have returned to being similar to 2011 levels in 2015. Rigure 3. Cycling participation rates in regional NSW by frequency of participation between 2011 and 2015 #### Participation by gender Consistent with national trends, males in regional NSW are more likely to cycle than females (see figure below). The rate of female cycling has increased on 2011 and 2013 levels. Figure 4. Cycling paracipation in regional NSW by gender #### Participation by age Trends also show that cycling participation rates are much higher among the youth and then decrease as people get older. Considering the activity of cycling is low impact, in theory, participation rates should increase in those aged over 50 years who tend to look for low impact physical activities. Cycling participation in regional NSW among almost all age groups has increased significantly. The only age group where cycling decreased in popularity was in 18 to 29 year olds. Pigure 5. Cycling participation in regional NSW by age cohort for 2013 and 2015 #### Cycling for transport The ABS Census collects information on what mode of transport respondents use to travel to work. This information provides an indication on the popularity of cycling for transport in given areas. In Upper Lachlan, the level of people cycling to work on the day of the Census in 2011 was quite low at 0.3%. This figure is lower than the averages for regional NSW and Australia and opportunities exist for encouraging cycling as a viable method of transport in the Upper Lachlan Shire. Table 3.Cycling for transport | Upper L
LG | | Regiona | NSW I | Austr | alia | |---------------|------|---------|-------|-------|------| | 2006 | 2011 | 2006 | 2011 | 2006 | 2011 | | 0.7 | 0.3 | 8.0 | 0.7 | 1.0 | 1.0 | Ordinary Meeting of Council held on 20 April 2017 I Anywhere in NSW, excluding the Sydney metropolitan area #### Bicycle ownership The number of bicycles per household in regional NSW tells a similar story to cycling participation comparisons. Roughly 29% of respondents have access to three or more working bicycles, much higher than NSW and Australia. Table 4. Bicycle ownership | Nomber of troycles per
nousehold | Regional | hsw. | Aust | |-------------------------------------|----------|------|------| | none | 43% | 50% | 46% | | one | 16% | 15% | 16% | | two | 11% | 12% | 15% | | three or more | 29% | 23% | 24% | #### Why should Council invest in walking and cycling? While walking and cycling trends at a National, State and Regional level indicate a decrease in participation (or remain steady) it is evident that at a local level there is great interest in walking and cycling for exercise, recreation and transport. Council currently has over 17km of pathways within the Shire, including 15km of footpaths and 2km of shared paths with an approximate asset value of \$1 631 Million Due to the ago and quality of the existing network many residents have indicated that they would walk and cycle more often given a range of improvements, including. If more footpaths and shared paths direct links to key destinations improved path maintenance wider road shoulders for cycling after transition from road to path. If improved accessibility for older residents and those with mobility issues. Participation barriers are summanised on the following page with the community engagement outcomes outlined in Section 4.0 of this Plan. #### 3.3 Participation barriers #### Cycling Understanding why people choose not to cycle for recreation or transportation purposes helps Council and other organisations to develop strategies and programs to eliminate and overcome the perceived barriers. #### Safety The perception that our roads are too dangerous is a major barrier to cycling. Research has found that 'visibility' is a major contributor to crashes involving a bicycle. This includes both bicycle riders not being seen by a driver at all or in time, or by vehicles not being seen by the bicycle rider at all or on time. #### Negative image of cyclists There is no debating that there is an ongoing dispute between cyclists, particularly road cyclists, and motor vehicle drivers about who has the right to the road. Many motor vehicle drivers, some of which are recreation or commuter cyclists themselves, believe that cars and cyclists do not mix on the road, especially during peak traffic times. #### Boredom, lack of motivation Some non-cyclists find cycling boring or feel that there is nothing interesting to look at or worth cycling to in their area. This is especially true for recreation cyclists. Rural cyclists often reported that they would cycle more if they lived in a city like Melbourne or Sydney, where there are numerous places of interest to visit and a variety of routes to key destinations, unlike rural towns, where the number of destinations and routes are limited.² #### Infrastructure A lack of cycling infrastructure, particularly off-road cycle paths, is a major barrier to cycling. On-road bike lanes often do not provide the type of protection for cyclists that they were intended to. Intersections and especially roundabouts pose problems for cyclists in urban areas. Infrastructure such as night lighting, benches, water bubblers and distance indicators are simple supportive embellishments that can make a ride more comfortable and enjoyable for cyclists. #### Weather and seasonal considerations In winter, it is often dark in the morning and evenings when people ride between work and home, which can impact upon their decision to ride or not. Additionally, the weather can play a large role in people's preference to ride, with hot summers and periods of rain impacting a riders' level of comfort and subsequent travel mode preferences. #### Convenience The journey to and from work for many people often involves a number of stops at different destinations. The convenience of the private motor vehicle is hard to overlook when choosing between the car or bicycle as the preferred mode of transportation for a trip. #### End-of-trip facilities Many workplaces continue not to
have comfortable end-of-trip facilities, such as showers, ironing facilities, changing areas, lockers and/or secure bicycle storage areas. The absence of these types of facilities, especially private showers and change areas, is a common reason for people, particularly women, choosing not to cycle to work or other destinations. ² Victorian Department of Transport (Walking and Cycling Branch) 2009. Encouraging Walking and Cycling Focus Group (Final Report) and the standing hundred and take tem ¹ Cycling Safety Action Plan 2014-2016 # Community engagement A comprehensive community engagement strategy was adopted during the development of the Plan to gain an understanding of walking and cycling within the Upper Lachlan Shire community. Community and stakeholder engagement has underpinned the development of this Plan. A range of tools were used to engage target groups, stakeholders and the general community, ensuring all interested people had an opportunity to comment during the development of the Plan. Engagement with the general community and stakeholders involved the following key methods: - 1. Community and stakeholder workshops - Crookwell - Gunning - 2. Community and stakeholder survey online and hard copy surveys - Council received 98 community surveys - Council-wide results are included within the Appendix - 3. Upper Lachlan Access Committee meetings - 4. Interviews with schools (primary and secondary schools) and young people. #### Key issues - walking Below is a summary of the key issues related to pedestrians and walking that arose from the community engagement process. Full results of the community survey are contained in the Appendix. #### Path surface and maintenance A consistent issue raised across the Upper Lachlan Shire was the quality of the existing path surfaces. Issues raised include uneven surfaces, cracked and lifting path sections and trip hazards. Maintenance was also raised as a common issue, with respondents listing a lack of maintenance on the existing path network. #### Number of footpaths Across the Shire, a lack of footpaths linking key destinations was highlighted as a key issue. Areas with shops, sporting facilities and schools were the main areas raised as requiring footpath linkages. This was particularly raised by residents from Collector, who current have no paths. #### Accessibility of shops In the areas of Crookwell, Taralga and Gunning, residents are concerned with the difficulty in accessing shops and services within the main street. There are currently three main issues associated with access to shops; the large step up from the road to the footpath; the steps into individual shops, with very limited number of shops with a ramp; and narrow doorways often preventing those with mobility devices and prams from entering. #### Provision of lighting The lack of path lighting was identified as a barrier to walking in Crookwell, Gunning and Collector. #### Kerb ramps There is a mismatch between the provision of kerb ramps and disabled car parking spaces within the main retail precinct of some towns. Additionally, the kerb ramp is often located in the wrong spot i.e. behind where the vehicle is parked, resulting in the ramp not being usable by those who need it. Across the Shire, there is an inconsistent provision of kerb ramps on existing paths, with some non-compliant and some non-existent. #### Road width and condition In Collector where there are no existing paths, the narrow roads and steep road-side drains create an issue for residents (especially school children) as they are forced to walk on the roads. #### Road crossing points Concerns were raised about the safety of crossing the street, with limited designated crossing points within the Shire. #### Improvements that would encourage the community to walk more often In addition to the key issues raised by respondents in the survey, residents were asked what improvements would encourage them to walk more often. The results are shown in the table below. Table 5. Improvements that would encourage walking Examples of Other* include: $\ \square$ improved road and kerb maintenance □ wider streets reduced speed limits within villages install enclosed road-side drainage to increase the amount of flat, walkable surfaces. Horatom Arross Modelling and PANE are a Robert and #### Key issues - cycling Below is a summary of the key issues related to cycling that arose from the community engagement process. Full results of the community survey are contained in the Appendix. #### Designated area for families to ride It was identified by the community that they would like to see designated paths and areas for families to ride their bikes together in a safe, off-road environment. This includes areas for young riders to develop their skills, as well as a network of off-road shared paths or circuit without the pressures of vehicles. #### Number of shared paths or cycle paths There are few paths within the Shire that allow for cyclists; either shared paths or specific cycle paths. Under New South Wales road rules, children under 12 years of age can ride on a footpath, as well as an adult supervising a cyclist under 12. #### Bicycle parking Residents identified the need for the provision of bicycle parking such as bicycle racks in key locations. Main street's and retail precincts, as well as sporting facilities were raised as requiring bicycle storage. #### Shared paths connecting key destinations A common issue identified was the lack of paths that connect key destinations within a number of towns. Common destinations include schools, shops and main streets and sporting facilities. #### Road condition, verge width and vehicle speed Survey respondents noted that the poor condition of many roads (between towns) as well as the high speed of vehicles makes it unsafe for cyclists to ride on the road. Subsequently, the limited road verge as well as the condition of the road verge prohibits cyclists from riding within the road shoulder. Riders are then forced to ride on the road. #### Signage and promotion Signage providing information to local residents and visitors on where to ride was identified as a gap in the existing bicycle network. #### Improvements that would encourage the community to take up or cycle more often In addition to the key issues raised by respondents in the survey, residents were asked what improvements would encourage them to take up cycling or cycle more often. The results are shown in the table below. Table 6. Improvements that would encourage cycling Examples of Other* include: ☐ improved road maintenance ☐ improved road lighting. Anderstitum cress of but Hanging in # 5.0 Analysis of the existing situation A detailed walking and cycling environment audit process was undertaken in the development of the Plan. The outcomes of the audit have shown a range of needs for the network. Three major areas needing improvement have been identified, and these translate into three key outcome areas for the Plan: - □ Pathway maintenance, improvements and new infrastructure Plan, deliver and maintain a well-connected pedestrian and cycle network - Supporting Facilities Provide supporting facilities including signage, line marking, lighting and the provision of end-of-trip facilities - ☐ Behaviour Change Program Encourage and promote the benefits of walking and cycling. The outcome areas are described in more detail within the following sections. The analysis of the existing walking and cycling networks, as well as future networks are provided in the following order: - ☐ Bigga ☐ Binda ☐ Collector ☐ Crookwell ☐ Dalton ☐ Grabben Gullen ☐ Gunning - ☐ Laggan ☐ Taralga ☐ Tuena. Upper Lachlan Shire Council Area - Villages Upper Lackett Shire Cour It ### Walking and cycling user groups Walking and cycling can be types of active transport as well as recreation and physical activity that can be enjoyed and participated in by all ages and abilities. The reasons why participants choose to walk and cycle varies among types of users, as does the needs of each user group. Each group has their own characteristics and requirements. Identifying the different types of users, allows Council to plan their pedestrian and cycle network accordingly and ensure the network meets the needs of more than one type of user. The main groups of pedestrians and cyclists (or user groups) in Upper Lachian can be categorised as follows: | Table 7.Wa | lking and | cycling | user | groups | |---|------------------------------------|---------|------|--------| | Secretary of the Park St. St. Co., or other parks | THE RESERVE AND PERSONS ASSESSMENT | | | | | Type of user | Characteristics | Environment | |-------------------------------------|---|--| | Primary school
children | Cognitive skills may not be fully developed, little knowledge of road rules, require supervision | Off-road shared path or footpath, very low volume residential street | | Secondary school children | Skill level varies, developing confidence | Generally use on-road facilities for cycling or off-road footpaths and shared paths for walking where available | | Recreation | Experience, age and skills vary greatly | Desire off-road footpaths or shared paths and quiet streets, avoid heavily trafficked routes, more experienced cyclists will prefer to use road system for long journeys | | Commuler | Vary in ages and fitness, come highly skilled and able to handle a variety of traffic conditions | Some commuter walkers and cyclists prefer paths or low-stress roads and are
willing to take longer to get to destination. Others (mostly commuter cyclists) want quick trips regardless of traffic conditions, primarily require space to ride and smooth riding surface, speed maintenance | | Non-cyclists and potential cyclists | Do not currently ride, however have the potential to with effective encouragement | This group would generally begin with off-road shared paths, footpaths (where permitted), very low volume residential streets or learn-to-ride circuits (where available) | | Utility | Walk or ride for specific purpose
(i.e. shopping), short length trips,
routes unpredictable | Not on highly trafficked roads, needs include comprehensive end-of-trip facilities and low-stress routes | | Touring (cyclists) | Long distance journeys, may be heavily equipped, some travelling in groups | Often route is similar to that of other tourists i.e. roads and long distance paths | | Roed/sport
cyclists | Often in groups, two abreast occupying left lane, needs are similar to commuters | Travel long distances in training on arterials, may include challenging terrain in outer urban or rural areas. Generally do not use off-road routes because of high speed and conflict with other users | | irladail@y irraeanced | Mobility scooter, wheelchair, walking stick or frame, vision impairment, prams | Requires a direct-route to key services and destinations via an off-road shared path or footpath, very low volume residential street. Requires smooth surfaces, good lighting and each access from the path to the street (i.e. compliant kerb ramps). End-of-trip facilities such as seating are important. | The needs of each of the identified user groups have been considered in the walling and cycling audit for each town and village. The identified needs and subsequent projects recommended for each town and village have been provided against projects across the Shire and are documented in section 6.0 of this report. 5.1 Bigga's existing walking and cycling network Oper Lachlan Shire Council Area Current situation Bigga had a total population of 296 people in 2011, with a median age of 49. Approximately 4.7% of the population are aged 19 and under, with 24.5% aged 65 and over. The average motor vehicle per dwelling is 2.1, with 70.2% of households having 2 or more vehicles. Its reported that 44.1% of Bigga's population travel to work by car, truck or motorbike/scooter, with 8.2% walking to work. The key destinations for pedestrians and cyclists in Bigga include: - Bigga Memorial Park - Bigga War Memorial Hall - ☐ Bigga Uniting Church - Hotel, Post Office and local store - Bigga Public School - Bigga Oval, Recreation Ground and Golf Course - □ Police station. Bigga currently has limited footpaths, with the asphalt hardstand areas outside of the shops on Binda Street providing the only formal surface for walking. The asphalt is in need of maintenance and repair. The Bigga Public School and recreation grounds are on the outskirts of the town centre, with no formal route for pedestrians and cyclists. The town centre has a condensed footprint that provides an opportunity for future connection of key destinations by pathways. Upper Lachlan Shire Council Map 1. Bigga's current situation Procesman Access Michility Parally Air and All Porce 5.1.1 Bigga's future walking and cycling network for Bigga is focussed on improving the connections between key destinations and the main street (Binda Street). These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 8. Bigga's future walking and cycling network | Reference | Project Type | Road Name | Details | |-----------------------|--------------------------|---------------------|---| | BIG01 | Footpath - Upgrade | Binda Street | Resurface the existing asphalt path on Binda Street from Mulgowrie Street to the existing concrete path on the Western side of Bigga Memorial Park. | | BIG02 | Footpath - New | Binda Street | Construct a new concrete footpath on Binda Street from the existing concrete section on the Western side of Bigga Memorial Park to Picker Street. | | BIG03 | Recreation Pathway - New | Grabine Road | Construct an off-road recreational pathway within the road reserve on Grabine Road, from Picker Street to the Binda Public School. Pathway to be constructed of de-constructed granite (or similar) to allow pedestrians and cyclist to access the school. | | BIGO4 | Recreation Pathway - New | Mulgowrie
Street | Construct an off-road recreational pathway within the road reserve on Mulgowrie Street, from Binda Street to Tuena Street and the Bigga Recreation Ground. Pathway to be constructed of de-constructed granite (or similar) to allow pedestrians and cyclist to access the Recreation Ground, Oval and Golf Course. | | BiG05 (not
mapped) | Historical Trail - New | TBD | Develop an interpretive trail highlighting the historic places of interest in Bigga, utilising signage and place markers. Route and specific places of interest to be determined. | Map 2. Bigga's proposed walking and cycling network 18 ## 5.2 Binda's existing walking and cycling network #### Current situation Binda had a total population of 211 people in 2011, with a median age of 50. Approximately 19.8% of the Binda population are aged 19 and under, with 22.5% aged 65 and over. The average motor vehicle per dwelling is 2, with 74.8% of households having 2 or more vehicles. It is reported that 60.0% of Binda's population travel to work by car, truck or motorbike/scooter, whilst 3.3% of the population walked to work. The key destinations for pedestrians and cyclists in Binda include: - ☐ Tennis Courts and playground - ☐ Sports Ground - ☐ St James Anglican Church - ☐ Binda Public School - ☐ Binda Memorial Hall - Post Office, Hotel and local store - ☐ Public toilets - ☐ Rose Cottage - ☐ Binda Mill. Binda's current provision of pathways is limited to the pathway that connects the public toilet to the car parking area on Queen Street. Binda Road and Junction Point Road connect to the heart of Binda on Queens Street. The speed of the vehicles on these busy roads can provide a safety issue for pedestrians wishing to access the shops and services on either side of Queen Street. The Binda Public School and Church are on the outskirts of the town centre, with no formal route for pedestrians and cyclists. The town centre has a condensed footprint that provides an opportunity for future connection of key destinations for pedestrians and cyclists. Upper Lachton Shin Council # Post Office Hotel Public Toilet Historical Museum/Monument Community Half Park and Recreation Grounds Education/Child Care Aged Care/Retirement Upper Lachlan Shire Council Offices Cemetery Hospital RFS/SES/ Police/Fire Station Existing Recreation Pathway Existing Shared Path Existing Footpath Church - 1 Tennis Courts and playground - 2 Binda Sports Ground - 3 Binda Public School Brokestrian Access Michilley Para ASAPI and Chillian # 5.2.1 Binda's future walking and cycling network The proposed future walking and cycling network for Binda is focussed on improving the connections between key destinations and the main street (Queen Street), as well as providing a safer crossing point for pedestrians on Queen Street. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 9. Binda's future walking and cycling network | Reference | Project Type | Road Name | Details | |--------------------------|----------------------------|--------------|--| | BIN01 | Shared Path - New | Queen Street | Construct a new shared path on the Eastern side of Queen Street from Bishop Street to Bell Street. | | BINO2 | Pedestrian Refuge -
New | Queen Street | Construct a new pedestrian refuge on Queen Street South of the Bishop Street intersection, to provide pedestrians with access to both sides of Queen Street. Signage and road markings to be installed to advise motorists on approach (both North and South). This project will be subject to RMS approval. | | BIN03 | Shared Path - New | Queen Street | Construct a new shared path on the Eastern side of Queen
Street from Bell Street to Duncan Street and the entrance of
the school. | | BINO4
(not
mapped) | Historical Trail - New | TBD | Develop an interpretive trail highlighting the historic places of interest in Binda, utilising signage and place markers. Route and specific places of interest to be determined. | Map 4. Binda's proposed walking and cycling network redestrian Access All Programps with an Ellin Man # 5.3 Collector's existing walking and cycling network #### **Current situation** Collector had a total population of 403 people in 2011, with a median age of 38. Approximately 27.9% of Collector's population are aged 19 and under, with 9.3% aged 65 and over. The average ownership of motor vehicles per dwelling is 2.2, with 76.7% of households having 2 or more vehicles. It is reported that 69.8% of Collector residents travel to work by car, truck or motorbike/scooter, with 5.5% walking to work. The key destinations for pedestrians and cyclists in Collector include: - □ Collector Memorial Hall - ☐ Church - ☐ Hotel, Post Office and local store/Cafe - □ Collector Public School - ☐ Collector
Recreation Ground - ☐ Historical monuments. Collector currently has no footpaths. The town has narrow roads with little-to-no road verge and deep open road-side channels for drainage. Collector has a low median age (compared to Upper Lachlan Shire median of 46) and a low proportion of those aged over 65 (compared to the Upper Lachlan Shire at 21.1%). The street lighting at Collector is patchy in its provision and requires some maintenance. The school is currently without a formal drop-off and pick-up area and has no identified crossing point for children and their parents. Collector has a lack of seating and rest spots for pedestrians and cyclists. #### Upper Lachlan Shire Council Area Upper Lachter Shire Counsil Map 5. Collector's current situation #### Legend Local Store Post Office Hotel Public Toilet Historical Museum/Monument Community Hall Park and Recreation Grounds Education/Child Care Aged Care/Retirement Upper Lachlan Shire Council Offices Cemetery Hospital Church RFS/SES/ Police/Fire Station Existing Shared Path Existing Footpath Existing Recreation Pathway - 1 Collector Public School - 2. Collector Recreation Ground - 3 Collector Memorial Hail - A Historical monuments Ordinary Meeting of Council held on 20 April 2017 # 5.3.1 Collector's future walking and cycling network The proposed future walking and cycling network for Collector is focussed on improving the connections between key destinations including the School. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 10. Collector's future walking and cycling network | Reference | Project Type | Road Name | Details | | | | | | |-----------|---------------------------------------|---------------------------------------|--|--|--|--|--|--| | COL01 | Shared Path - New | Lorn Street | Construct a new shared path on the Western side of Lorn Street from Church Street to Bourke Street. | | | | | | | COLO2 | Shared Path - New | Bourke Street
and Surrey
Street | Construct a new shared path on Bourke Street from Lorn Street to Surrey Street, and Surrey Street from Bourke Street to Church Street (utilising the small section of unformed road on Surrey Street). | | | | | | | COL03 | Shared Path - New | Church Street | Construct a new shared path on Church Street from Surrey Street to Lorn Street. COL01, COL02 and COL03 will create a town circuit for pedestrians and cyclists. | | | | | | | COLO4 | Footpath - New | Goulburn Street | Construct a new footpath on Goulburn Street, from Lorn Street to provide access to both the school and the proposed shared path circuit. | | | | | | | COLO5 | School drop-off and pick-up bay - New | Lorn Street | Design and construct a formal drop-off and pick-up bay at
the Collector School to allow the safe access of children to
the school. Develop in partnership with the Collector School
(and/or the NSW Department of Education). | | | | | | | COL06 | Historical Trail - New | TBD | Develop an interpretive trail highlighting the historic place of interest in Collector, utilising signage and place marke Route and specific places of interest to be determined. | | | | | | Map 6. Collector's proposed walking and cycling network ### 5.4 Crookwell's existing walking and cycling networl Upper Lachlan Shire Council Area Current situation Crookwell had a total population of 2,507 people in 2011, with a median age of 48. Approximately 23.6% of its population is aged 19 and under, with 26.1% aged 65 and over. The average motor vehicle ownership per dwelling is 1.9, with 58.9% of households having 2 or more vehicles. It is reported that 73.3% travel to work by car, truck or motorbike/scooter, with 4.9% walking to work and 0.5% catching a bus. The key destinations for pedestrians and cyclists in Crookwell include: - The retail and service precinct on Goulburn Street - Crookwell Public School - □ Crookwell High School - St Mary's Primary School - Crookwell Memorial Park and Oval - Crookwell Memorial Hall - Crookwell Showground - ☐ Willis Park Dog Off Leash Area - ☐ Golf Course - Clifton Park Skate Ramp - Lin Cooper Recreation Area - Kiamma Park and Creek - Coleman Park and Swimming Pool (Pat Cullen - Reserve) - Cemetery Preschools - Churches - Police station - Upper Lachlan Shire Council Office - ☐ Crookwell Hospital. Crookwell Crookwell has a good network of footpaths providing access to a number of key destinations. The footpath network is ageing however, with a number of sections in need of maintenance and upgrade. There are a number of missing links in the network and lack of lighting is an issue in some sections. There is an opportunity to develop a suite of directional signage to promote the existing and proposed pathway network to both residents and visitors. Accessibility of the footpath from the road is an issue, as is the access to the majority of retail stores for residents with limited mobility due to steps and narrow doorways. Upper Lathlen Shire Courtil # 5.4.1 Crookwell's future walking and cycling network The proposed future walking and cycling network for Crookwell is focussed on improving the connections between key destinations and creating a safe environment for pedestrians and cyclists. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Crookwell's future walking and cyding network | Reference | Project Type | Road Name | Details | | | | | | |-----------|---------------------------------|--|---|--|--|--|--|--| | CR001 | Footpath - New | Goulburn Street | between East Street and Warne Lane to provide a continuous pedestrian link. | | | | | | | CR002 | Shared Path - New | Saleyards Road | Develop a new concrete shared path on Saleyards Road from Laggan Road to the existing footpath on Saleyards Road to provide a continuous pedestrian link into Crookwell. | | | | | | | CROO3 | Footpath - New | Roberts Road | Develop a new concrete footpath on Roberts Road - from
Goulburn Street to Robertson Street, and from Goulburn
Street to Denison Street. This footpath will provide a missing
connection in the existing network | | | | | | | CRO04 | Shared Path - New | Northcott
Street | Develop a new concrete shared path on Northcott Street starting from the existing shared path on Carrington Street to Apex Park and then to the corner of Brooklands Street. This recommendation is a carryover from Council's 2005 PAMP. | | | | | | | CR005 | Shared Path - New | Goulburn Street | Develop a new concrete shared path on Goulburn Street from
the entrance of Lin Cooper Recreation Reserve, to the existing
footpath at the entrance to the showgrounds. | | | | | | | CROO6 | Shared Path - New | Denison and
Brooklands
Streets | Develop a new de-constructed granite shared path from the existing recreational pathway across the Crookwell River, to Brooklands Street and the corner of Northcott Street. | | | | | | | CRO07 | Shared Path - New | Brooklands and
Tait Street | Develop a new concrete shared path on Brooklands Street from Holborow Street, and on Tait Street to Allamabie Place. | | | | | | | CRO08 | Recreational Path
- New | Tait Street | Develop a new deconstructed granite recreational path on Ta
Street from Allamabie Place to McDonald Street. | | | | | | | CRO09 | Recreational Path
- New | McDonald
Street | Develop a new deconstructed granite recreational path on McDonald Street from Tait Street to the rear entrance to Crookwell Hospital. | | | | | | | CRO10 | Shared Path - New | McDonald
Street | Develop a new shared path on McDonald Street from the rear entrance to the Crookwell Hospital to Kialla Road. | | | | | | | CRO011 | Learn-to-Ride
Facility - New | Crookwell
Showgrounds
or other
suitable
location | Investigate the feasibility of developing a children's learn-to-
ride facility within the Crookwell Showgrounds or other relevant
location. Facility to include a cycling track with miniature road
signage and obstacles for children to develop their cycling
skills in a safe environment. | | | | | | | CR012 | Kerb Ramp - New | Goulburn Street | Develop a number of kerb ramps along the retail precinct on Goulburn Street to enhance accessibility from the road to the footpath. | | | | | | | CR013 | Footpath -
Upgrade | Goulburn Street | Replace path surface with concrete from the entrance of the showground, to Showground Lane. | | | | | | | CRO14 | Kerb Ramp -
Upgrade | Goulburn Street | Upgrade the existing kerb ramp to compliant grade on Goulburn Street at the intersection of Showground Lane. | | | | | | | CRO15 | Kerb Ramp -
Upgrade | Goulburn Street | Upgrade the existing kerb ramp to compliant grade on Goulburn Street at the intersection with Pleasant Street. | | | | | | | CRO16 | Kerb Ramps - New | Denison Street | install two new kerb ramps on the corners of Denison and Roberts Streets. | | | | | | | CRO17 | Signage - New | Roberts Street | Install new promotional signage on Roberts Street at the intersection of Denison Street, advising of the path and bridge to Brooklands Street. | | | | | | of the Local in Shire Council | Reference | Project Type | Road Name | Details | | | | | | |-----------|-------------------------------|---------------------------------------
--|--|--|--|--|--| | CRO18 | Signage - New | Brooklands
Street | install new promotional signage on Brooklands Street at the intersection of Short Street, advising of the path and bridge leading to Roberts Street. | | | | | | | CRO19 | Footpath -
Upgrade | Goulburn and
Carrington
Streets | Replace the existing footpath as it is too narrow, too close to the road, and in poor condition. Install railing or bollards on new path for pedestrian safety. | | | | | | | CRO20 | Footpath -
Upgrade | Saleyards Road | Widen the existing footpath to shared path standards from Carr Street to Marsden Street. These works are currently scheduled for 2018/2019. | | | | | | | CRO21 | Signage -New | Spring Street | Install new information signage at the entrance to the Kiam
Creek Boardwalk (Pat Cullen Reserve) at the entrance on
Sprint Street. | | | | | | | CRO22 | Boardwalk -
Upgrade | Pat Cullen
Reserve | Repair (or replace) the timber boardwalk including the edgerails, and widen. These works are currently funded within the 2016/2017 financial year. | | | | | | | CRO23 | Footpath - New | Spring Street | Extend the existing footpath on Spring Street to Findhorn Street. | | | | | | | CRO24 | Pedestrian Refuge
- New | Laggan Road | Install a pedestrian refuge with associated motorist and pedestrian signage to Clifton Park. | | | | | | | CRO25 | Kerb Ramp - New | Kialla Road | Install a new kerb ramp on Kialla Road at the intersection of Wade Street. | | | | | | | CRO26 | Recreational
Pathway - New | Pat Cullen
Reserve | Develop a new deconstructed granite recreational path from the end of the existing path at the Kiamma Creek Footbridge, on the Western side of Pat Cullen Reserve, to Laggan Road. | | | | | | | CRO27 | Recreational
Pathway - New | Clifton Park | Develop a new deconstructed granite recreational path around the extent of Clifton Park. | | | | | | | CRO28 | Bus Shelter - New | Spring Street | Install a new bus shelter on the corner of Spring Street and Goulburn Road adjacent to the existing car park. | | | | | | Browstran in cers his birty han fit with and Bire Lan Page intentionally blank "destrongeres Nonth Carparation in Error ### 5.5 Dalton's existing walking and cycling network #### Current situation Dalton had a total population of 108 people in 2011, with a median age of 35. Approximately 22.3% are aged 19 and under, with 16.7% 65 and over. Average motor vehicle per dwelling is 1.9, with 71.8% of households having 2 or more vehicles. 68.4% travel to work by car, truck or motorbike/scooter. No one reportedly walked to work. Within the town of Dalton, the key destinations for pedestrians and cyclists include: - □ Dalton Public School - ☐ Dalton Uniting Church - ☐ St Matthews Anglican Church - ☐ Hotel - ☐ Post Office - ☐ Historical Monument - □ Dalton Recreation Ground - ☐ Fossil Park. Dalton currently has limited footpaths, with the main street providing small sections of concrete path. Sections exist in front of the Post Office and hotel. The Dalton Primary School is not connected to the main street. Upper Lachian Shire Council Map 9. Dalton's current situation Er Jerthalm Horest Me He Frei plant - Francisco Pari ### 5.5.1 Dalton's future walking and cycling network The proposed future walking and cycling network for Dalton is focussed on filling missing links, as well as improving the connections between the main street and the School. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 11. Dalton's future walking and cycling network | Reference | Project Type | Road Name | Details | | | | | | |------------------------------------|----------------------------|--------------------------------|--|--|--|--|--|--| | DAL01 | Footpath - New | Church Street | Develop a new concrete footpath on the Northern side of Gunning Street in the vicinity of Chapel Street and Garry cosgrove Bridge over Oolong Creek, to complete the missir link in the existing footpath. | | | | | | | DAL02 Footpath - New Jobson Street | | Jobson Street | Develop a new concrete footpath along Jobson Street, from the entrance to the school and Gunning Street. This footpath will provide a connection between the school and the Gunning Street. | | | | | | | DAL03 | Pedestrian Refuge -
New | Brown Street | Install a pedestrian refuge with associated motorist and pedestrian signage to Brown Street at Dalton Public School. | | | | | | | DALO4 | Shared Path - New | Dalton
Recreation
Ground | Develop a new concrete shared path within the Dalton Recreation Ground. | | | | | | Map 10. Dalton's proposed walking and cycling network 36 # 5.6 Grabben Gullen's existing walking and cycling network #### Current situation Grabben Gullen had a total population of 476 people in 2011, with a median age of 44. Approximately 27.2% are aged 19 and under, with 19.6% aged 65 and over. The average motor vehicle ownership per dwelling is 2.5, with 74.3% of households having 2 or more vehicles. It is reported that 48.5% of Grabben Gullen's population travel to work by car, truck or motorbike/scooter, with a further 3.8% walking to work. Within the town of Grabben Gullen, the key destinations for pedestrians and cyclists include: - ☐ Grabben Gullen Hall - ☐ Albion Hotel - ☐ Monument to the Wiradjuri Aboriginal People. Grabben Gullen currently has no footpaths. The town is traversed by the busy Grabben Gullen and Range Road's, providing a reduced safety environment for pedestrians and cyclists. There are currently no safe crossing points for pedestrians and cyclists within Grabben Gullen. Upper Lackton Shire Council Map I I. Grabben Gullen's current situation # 5.6.1 Grabben Gullen's future walking and cycling network The proposed future walking and cycling network for Grabben Gullen is focussed on providing a safe pedestrian environment. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 12. Grabben Gullen's future walking and cycling network | Reference | Project Type | Road Name | Details | | | | | |-----------|----------------------------|-------------|---|--|--|--|--| | GRA01 | Footpath - New | Camp Street | Develop a new concrete footpath along Camp Street, from Caledonia Street to the newly constructed bus stop. | | | | | | GRA02 | Pedestrian Refuge -
New | Camp Street | Construct a new pedestrian refuge on Camp Street to provide a safe pedestrian access point to and from the newly constructed school bus stop. Signage and road markings to be installed to advise motorists on approach (both sides). | | | | | Map 12. Grabben Gullen's proposed walking and cycling network 40 # 5.7 Gunning's existing walking and cycling network Current situation Upper Lachlan Shire Council Area Current situation Gunning had a total population of 482 people in 2011, with a median age of 45. Approximately 22.3% of the Gunning population are aged 19 and under, with 15.5% aged 65 and over. The average motor vehicle ownership per dwelling is 1.8. with 54.3% of households having 2 or more vehicles. It is reported that 75.7% travel to work by car, truck or motorbike/scooter, with 4.5% of the population walked to work. Within the town of Gunning, the key destinations for pedestrians and cyclists include: - Barbour Park - Endevour Park and Showgrounds - Skate Park - **Gunning Public School** - Yass Street retail and service precinct - Upper Lachlan Shire Council Office - ☐ Church - ☐ Post Office - ☐ Gunning Rail Yard. Gunning has a reasonable network of existing footpaths, however with a number of missing links to key destinations, and some maintenance and upgrade requirements. Accessibility in Yass Street is an issue with a considerable step-up from the road to the kerb, as well as limited kerb ramps for the elderly and disabled. The speed of vehicles through town can be an issue for pedestrians. Disabled car parking bays are required with associated kerb ramps Pepar Lection Shire Council Map 13. Gunning's current situation Local Store Post Office Hotel Public Tollet Historical Museum/Monument Community Hall Park and Recreation Grounds Education/Child Care Aged Care/Retirement Upper Lachtan Shire Council Offices Cemetery Hospital Church RFS/SES/ Police/Fire Station Existing Shared Path Existing Footpath Existing Recreation Pathway - 1 Barbour Park - 2 Endeyour Park and Showgrounds - 3 Gunning Skate Park - 4 Gunning Public School - 5 Gunning Rail Yard Personantial es distibit Planetian manifolia Para # 5.7.1 Gunning's future walking and cycling network The proposed future walking and cycling network for Gunning is focussed on providing a safe network of pathways to link key destinations, enhancing pedestrian accessibility to the retail precinct on Yass Street, as well as a greater recreational circuit. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 13. Gunning's future walking and cycling network | Patarence | Project Type | Road Name | Details | | | | | | |-----------|--
---|--|--|--|--|--|--| | GUN01 | Footpath - New | Nelanglo Street | Develop a new concrete footpath on Nelanglo Street from Yass Street to Copeland Street, providing access to the Gunning Showground Precinct and the existing footpath network. | | | | | | | GUN02 | Kerb Ramps - New | Yass Street | Develop a number of kerb ramps along the retail precinct on Yass Street to enhance accessibility from the road to the footpath. | | | | | | | GUN03 | Shared Path - New | Hume Street | Develop a new concrete shared path on Hume Street from Bond Street to Grovenor Street. Together with GUN04 as well as the existing path on Nelanglo and Warrataw Streets, this shared path will create a recreational circuit for both pedestrians and cyclists. | | | | | | | GUNO4 | Shared Path - New | Grovenor Street | Develop a new concrete shared path on Grovenor Street from Hume Street to Warrataw Street. Together with GUNO3 and GUNO4 as well as the existing path on Nelanglo and Warrataw Streets, this shared path will create a recreational circuit for both pedestrians and cyclists. | | | | | | | GUN05 | Footpath - New | Bond Street | Develop a new concrete footpath on Bond Street from Yass
Street to Grovenor Street. | | | | | | | GUN06 | Kerb Ramp - New | Warrataw and
Copeland
Streets | Develop a kerb ramp on Warrataw Street at the intersection with Copeland Street to enhance accessibility from the roato the footpath. | | | | | | | GUN07 | Disabled Carpark
and Kerb Ramp -
New | Nelangio Street | Install, line mark and sign a disabled carpark with corresponding kerb ramp to provide disabled access to the Council Offices and the Southern end of town. | | | | | | | GUN08 | Footpath - New | Warrataw
Street | Develop a new concrete footpath on Warrataw Street from the existing footpath to the intersection with Copeland Street. | | | | | | | GUN09 | Shared Path - New | Shared Path - New Saxby Street Develop a new concrete shared path on Saxby Street part of Warrataw Street) from Grovenor Street (GUN Adam Street. | | | | | | | | GUN10 | Shared Path - New | Adam Street | Develop a new concrete shared path on Adam Street from Saxby Street to Barbour Park. | | | | | | | GUN11 | Shared Path - New | Yass Street | Replace the existing footpath surface on Yass Street with a new concrete shared path from Nelanglo Street to Bond Street. | | | | | | | GUN12 | Shared Path - New | Copeland
Street | Develop a new concrete shared path on Copeland Street from Warrataw Street to Nelanglo Street, at the rear of Gunning Public School. | | | | | | # 5.8 Laggan's existing pedestrian and cycling network **Current situation** Laggan had a total population of 326 people in 2011, with a median age of 49. Approximately 26.4% of the population are aged 19 and under, with 15.3% aged 65 and over. The average motor vehicle ownership per dwelling is 2.4, with 78.7% of households having 2 or more vehicles. It is reported that 50.2% travel to work by car, truck or motorbike/scooter, and a further 2.8% walked to work ... Within the town of Laggan, the key destinations for pedestrians and cyclists include: - Laggan Memorial Hall - Laggan Primary School - ☐ Monthly markets - Church - Hotel - ☐ Park. Laggan currently has no formal pathways with the exception of the recent access to the public toilets at the Memorial Hall. The school is on the outskirts of the town centre, with no formalised route for pedestrians or cyclists. The school is without a formal drop-off and pick-up area. Upper Lachlan Shire Council Map 15. Laggan's current situation Pedistrian Access Michibia Pan (Pavill and Bik. Plan 5.8.1 Laggan's future walking and cycling network for Laggan is focussed on providing a continuous pedestrian link within the town centre, as well as improving access to the school. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 14. Laggan's future walking and cycling network | Reference | Project Type | Food Name | Details | | | | | |-----------|----------------------------------|----------------------|--|--|--|--|--| | LAG01 | Footpath - New | Laggan Road | Develop a new footpath on Laggan Road from the entrance of the school to the intersection of Laggan-Taralga Road to provide access from the school to the town centre. | | | | | | LAG02 | Pedestrian Refuge -
New | Woodhouselee
Road | Construct a new pedestrian refuge on Woodhouselee Road,
South of the intersection with Laggan-Taralga Road. Refuge
to provide a safe crossing point for pedestrians accessing
the school or Laggan town. | | | | | | LAG03 | G03 Footpath - New Peelwood Road | | elwood Road Develop a new footpath on Peelwood Road from the Memorial Hall to LAGO1 at the intersection of Laggan- Taralga Road to provide a continuous footpath link withi the centre of Laggan. | | | | | | LAG04 | School drop-off and pick-up bay | Laggan Road | Design and construct a formal drop-off and pick-up bay at the entrance to the Laggan Public School to allow safe access for children to the school. Develop in partnership with the Laggan Public School (and/or the NSW Department of Education). | | | | | Map 16. Laggan's proposed walking and cycling network 48 #### 5.9 Taralga's existing walking and cycling network Upper Lachlan Shire Council Area Current situation Taralga had a total population of 285 people in 2011. with a median age of 44. Approximately 28.3% of the population are aged 19 and under, and 25.1% are aged The average motor vehicle ownership per dwelling is 1.8, with 56.3% of households having 2 or more vehicles. It is reported that 69.2% of Taralga's population travel to work by car, truck or motorbike/scooter, with a further 10.6% who walked to work. Within the town of Taralga, the key destinations for pedestrians and cyclists include: - □ Taralga Public School - Goodhew Park and Skate Park - ☐ Tennis Courts - Upper Lachlan Shire Council Office - □ Taralga Showgrounds - Church - Post Office - □ Taralga Memorial Hall - ☐ Taralga Historical Museum - ☐ Gray Park - **Burge Park** - Orchard Street retail and service precinct. Taralga has a reasonable provision of footpaths along the main street, however has a number of missing links to key destinations. A number of paths require some maintenance and upgrades. There are issues with accessibility within the main street due to the large step-up from the road to the street, coupled with a lack of ramps for the elderly and disabled. Additionally, a number of stops are inaccessible, again due to the large steps to enter, as well as narrow door ways unsuitable for mobility scooters and wheelchairs. Taraiga Footpath at Goodhaw Park, faralga Upger Lachtan Shire Council Map 17. Taralga's current situation #### Legend Local Store Post Office Hotel **Public Toilet** Historical Museum/Monument Community Hall Park and Recreation Grounds Education/Child Care Aged Care/Retirement Upper Lachtan Shire Council Offices Cemetery Hospital Church RFS/SES/ Police/Fire Station **Existing Shared Path** Existing Footpath Existing Recreation Pathway Taralga Public School Taralga Early Learning Centre Goodhew Park and Skate Park Taralga Showgrounds Tennis Courts Gray Park 7 Burge Park # 5.9.1 Taralga's future walking and cycling network The proposed future walking and cycling network for Taralga is focussed on improving the connectivity and accessibility within Orchard Street, given there are two distinct activity areas of the main street. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 15. Tardga's future walking and cycling network | Reference | Project Type | Road Name | Details | | | | | |-----------|---------------------------------------|-------------------------------------|--|--|--|--|--| | TAR01 | Footpath - New | Orchard Street | Develop a new concrete footpath from the end of the existing footpath on Orchard Street to Gray Park. | | | | | | TARO2 | Footpath - New | Bunnaby and
MaCarthur
Streets | Develop a new concrete footpath on Bunnaby and MaCarthur Streets from Orchard Street to Walsh Street. The footpath will link up to the Recreational Pathway TARO6 providing access to the tennis courts and showgrounds. | | | | | | TARO3 | Footpath - New | Orchard Street | Develop a new concrete footpath on Orchard Street from the school to Hillas Street to connect to TARO5 and the Early Learning Centre. | | | | | | TARO4 | Recreational
Pathway - New | Hillas Street | Construct an off-road recreational pathway within the road reserve on Hillas Street from Orchard Street to the Early Learning Centre. | | | | | | TARO5 | Recreational
Pathway - New | Walsh Street | Construct an off-road recreational pathway within the road reserve on Walsh Street to provide access to the tennis courts and showgrounds. | | | | | | TARO6 | Disabled car
park and kerb
ramp | Orchard Street | Install, line-mark and sign a disabled carpark with corresponding kerb ramp to provide disabled access to
the Northern end of town | | | | | | TAR07 | Disabled car
park and kerb
ramp | Orchard Street | Install, line-mark and sign a disabled carpark with corresponding kerb ramp to provide disabled access to the centre of town. | | | | | | TARO8 | Kerb Ramp -
New | Orchard Street | Install a new kerb ramp, the path exists from the footpath to the kerb. | | | | | | TAR09 | Disabled car
park and kerb
ramp | Orchard Street | Install, line-mark and sign a disabled carpark with corresponding kerb ramp to provide disabled access to the southern end of town | | | | | | TAR10 | Footpath - New | Church Street | Develop a new concrete footpath on Church Street from MacCarthur Street to Chisolm Street. | | | | | Map 18. Taralga's proposed walking and cycling network 5.10 Tuena's existing walking and cycling network Opper Lachlan Shire Council Area Current situation Tuena had a total population of 187 people in 2011. with a median age of 52. Approximately 16.7% of Tuena's population are aged 19 and under, and 24.9% are aged 65 and over. The average motor vehicle ownership per dwelling is 2, with 71.8% of households having 2 or more vehicles. It is reported that 41.0% of Tuena's residents travel to work by car, truck or motorbike/scooter, with a further 3.3% who walked to work. Within the town of Tuena, the key destinations for pedestrians and cyclists include: - Tuena Recreation Ground - Tuena Community Hall - School (not-operational) - Post Office - $\bar{\Box}$ Local store - ☐ Hotel - ☐ Church - □ Cemetery - □ Police Station - ☐ Footbridge. Tuena currently has no footpaths, and the school is currently not-operational. Upper Lachten Shire Council Map 19. Tuena's current situation #### Legend Local Store Post Office Hotel Public Toilet Historical Museum/Monument Community Hall Park and Recreation Grounds Education/Child Care Aged Care/Retirement Upper Lachlan Shire Council Offices Cemetery Hospital Church RFS/SES/ Police/Fire Station Existing Shared Path Existing Footpath Existing Recreation Pathway 1 Tuena Recreation Ground 2 Tuena Community Hall 3 School (not-operational) 4 Police Station 5 Footbridge ## 5.10.1 Tuena's future walking and cycling network The proposed future walking and cycling network for Tuena is focussed on improving accessibility to key destinations within the main street, as well as providing a recreational link to the existing footbridge. These are detailed in the table below and are not representative of their priority, as they are prioritised against shire-wide needs in Table 18, Section 6.2. Table 16. Tuena's future walking and cycling network | Reference | Project Ty∌# | Road Name | Details | |-----------|--------------------------|-----------------|--| | TUE01 | Shared Path - New | Bathurst Street | Develop a new concrete shared path along Bathurst
Street from Church Street (Tuena Hall) to Bell Street for
pedestrians and cyclists. | | TUE02 | Recreation Pathway - New | Bell Street | Develop a new decomposed granite (or similar) recreational path from the end of the proposed shared path (TUE01) to the footbridge to provide pedestrians and cyclists with access to Cook Street and Bathurst Street. | Map 20. Tuena's proposed walking and cycling network Upper Lathrin Shire Connid Page intentionally blank Redistrian screek bromility Frankfield in Ribertian # 6.0 Prioritisation of works ### 6.1 Prioritisation criteria To assist in the ongoing identification and justification of a prioritised capital works program for pedestrian and cycling infrastructure, a set of capital works assessment criteria have been developed. The criteria will allow Council to standardised the process for prioritising its capital works, while being transparent and equitable in its decision making. The criteria have been developed based on the issues and opportunities identified throughout the development of the Plan, and are outlined in the Table below. Each category has been assigned a total score based on its relative priority within the categories i.e. safety is higher than demand. Table 17. Prioritisation of works criteria | Category | Criteria | Outcome | S∞re | | |-----------|------------------------------------|--|------|--| | Access | Improved access | Access is improved for residents to key destinations such as schools, retail, services, open space and transport | /15 | | | | Priority
residential
area | Communities with limited access to private vehicles and public transport are connected to key destinations | | | | | Completion of a link | A footpath, shared path or cycleway is complete and provides unbroken access to key destinations | | | | | Capacity | Increased participation in walking and cycling i.e. increase path width to accommodate demand | | | | Safety | Identified safety issue | The environment is safe for pedestrians and cyclists. Identified sites of previous crash incidents should be prioritised | /15 | | | Demand | Levels of use | A route is evidently well used (including evidence of use through a desire line) | | | | | Identified community need | A key route/improvement is identified during the community engagement process | | | | Financial | Funding capacity | Council's capacity to fund capital works projects within a realistic time frame | /10 | | | | Eligible for grants or sponsorship | chools, retail, services, open space and transport communities with limited access to private vehicles and ablic transport are connected to key destinations footpath, shared path or cycleway is complete and provides abroken access to key destinations creased participation in walking and cycling i.e. increase ath width to accommodate demand the environment is safe for pedestrians and cyclists, lentified sites of previous crash incidents should be rioritised route is evidently well used (including evidence of use arough a desire line) key route/improvement is identified during the community agagement process ouncil's capacity to fund capital works projects within a calistic time frame rojects are part-funded or have the capacity to attract external funding | | | | | Cost benefit | The cost of developing (and maintaining) infrastructure is comparable to the expected level of use i.e potential demand | | | #### Scoring The scoring of the above categories is undertaken considering the allocated criteria and their outcome. Some criteria and their outcome areas may not be relevant to a project and as such scoring is undertaken at a category level, considering the relevant criteria. The scale bar below demonstrates the scores to be allocated based on how each project meets the desired outcomes i.e. a score of one is for projects where the desired outcomes are not achieved, scores of six to ten are for projects that moderately achieve the outcome, and the higher scores up to fifteen are for projects that best achieve the desired outcome. The difference in the scores for the four category areas reflects the importance of the category and their weighted importance. | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |---------|--------|---|---|---|---|-------|----------|--------|----|----|----|----|----|---------| | Not acl | nieved | | | | | Moder | ately ac | hieved | | | | | Ac | chieved | Upper Lachium Shire Council ### 6.2 Prioritisation and costing of projects #### Maintaining the existing network Council's existing pathway network provides a sound basis to build upon, in the creation of a more active walking and cycling community. The existing network is ageing and requires ongoing maintenance to ensure the safety and accessibility for all path users. Council's current investment in pedestrian and cycle facilities is approximately \$1.6 Million. It is recommended that as the first priority of the PAMP and Bike Plan, Council allocate an annual maintenance program for the network of 3% (i.e. approximately \$50,000. #### Estimated costings The cost estimates provided below have been provided as an indicative rate only. All proposed projects are subject to detailed feasibility and design processes, and are subject to factors such as the location of existing utilities, verge suitability etc. #### Pathways and road crossing treatments In addition to the allocation of an annual maintenance program, the following table provides details of new and upgraded pathways and road crossing treatments, to be undertaken over the next 10 years. The scoring of individual projects based on the criteria outlined on the previous page is shown in the Table below. The cost estimate of each project has also been included within the table. Table 18. Prioritisation and costing of projects | Reference | Road name | Path type | Otsienica
(kon) | Bost
Estimente S | Priority
score/50 | Priority
ranking | |-----------|------------------------------------|------------------------------------
--|---------------------|----------------------|---------------------| | GUN12 | Copeland Street | Shared Path | 201 | 22,110 | 44 | 1 | | LAG01 | Laggan Road | Footpath | 88 | 68,200 | 42 | 2 | | CRO19 | Goulburn Street /Carrington Street | Footpath | 248 | 35,816 | 42 | 2 | | LAG02 | Woodhouselee Road | Pedestrian Refuge | | 15,000 | 41 | 4 | | LAG04 | Laggan Road | School Drop-off
and Pick-up Bay | - | 25,000 | 40 | 5 | | TAR10 | Church Street | Footpath | 420 | 28,512 | 40 | 5 | | CRO22 | Pat Culien Reserve | Boardwalk
Upgrade | • | 16,000 | 40 | 5 | | CRO24 | Laggan Road | Pedestrian Refuge | | 25,000 | 39 | 8 | | GUN11 | Yass Street | Shared Path | 201 | 22,110 | 39 | 8 | | COL05 | Lorn Street | School Drop-off
and Pick-up Bay | =5 | 100,000 | 38 | 10 | | DAL03 | Brown Street | Pedestrian Refuge | | 25,000 | 38 | 10 | | COL01 | Lorn Street | Shared Path | 335 | 36,850 | 37 | 12 | | DAL02 | Jobson Street | Footpath | 480 | 17,160 | 37 | 12 | | GRA02 | Camp Street | Pedestrian Refuge | Property Commission Commission (Security Commission Com | 25,000 | 37 | 12 | | TAR03 | Orchard Street | Footpath | 132 | 118,800 | 37 | 12 | | TARO1 | Orchard Street | Footpath | 302 | 27,060 | 36 | 16 | | TARO4 | Hilas Street | Recreational Path | 259 | 54,725 | 36 | 16 | | CR002 | Saleyards Road | Shared Path | 124 | 33,220 | 36 | 16 | | CRO04 | Carrington and Northcott Streets | Shared Path | 100 | 28,490 | 36 | 16 | | CRO26 | Pat Cullen Reserve | Recreational Path | 205 | 27,900 | 36 | 16 | | GUN01 | Nelanglo Street | Footpath | 199 | 11,000 | 36 | 16 | | BIN02 | Queen Street | Pedestrian Refuge | - | 25,000 | 35 | 22 | | Reference | Road name | Path type | Distance
(km) | Carel
estimate \$ | Priority
score/50 | Pitarity
rankin | |-----------|----------------------------------|---------------------------|------------------|----------------------|----------------------|--------------------| | TARO5 | Walsh Street | Recreational Path | 605 | 90,200 | 35 | 22 | | GUN03 | Parks, Yass, Cooper/Hume Streets | Shared Path | 598 | 66,550 | 35 | 22 | | GUN04 | Grovenor Street | Shared Path | 328 | 65,780 | 35 | 22 | | BINO3 | Queen Street | Shared Path | 625 | 171,875 | 34 | 26 | | LAG03 | Peelwood Road | Footpath | 229 | 112,475 | 34 | 26 | | CRO03 | Roberts Road | Footpath | 438 | 33,220 | 34 | 26 | | CRO20 | Saleyards Road | Footpath | 69 | 178,266 | 34 | 26 | | GUN08 | Warrataw Street | Footpath | 409 | 7,590 | 34 | 26 | | BIN01 | Queen Street | Shared Path | 284 | 78,100 | 33 | 31 | | DAL04 | Dalton Recreation Ground | Shared Path | 256 | 138,000 | 33 | 31 | | CRO05 | Goulburn Street | Shared Path | 54 | 28,160 | 33 | 31 | | CR013 | Goulburn Street | Footpath | 156 | 7,128 | 33 | 31 | | GUN10 | Adam Street | Shared Path | 268 | 18,700 | 33 | 31 | | GUN09 | Saxby Street | Shared Path | 170 | 29,480 | 33 | 31 | | GRA01 | Camp Street | Footpath | 376 | 41,360 | 32 | 37 | | TARO2 | Bunnaby and MaCarthur Streets | Footpath | 403 | 110,825 | 32 | 37 | | CR011 | Crookwell Showgrounds | Learn-to-Ride
Facility | • | 4,700 | 32 | 37 | | GUN05 | Bond Street | Footpath | 403 | 39,160 | 32 | 37 | | COLO2 | Bourke Street and Surrey Street | Shared Path | 660 | 72,600 | 31 | 41 | | COLO3 | Church Street | Shared Path | 403 | 44,330 | 31 | 41 | | BIG01 | Binda Street | Footpath | 80 | 22,000 | 30 | 43 | | DAL01 | Church Street | Footpath | 118 | 12,980 | 30 | 43 | | CRO01 | Goulburn Street | Footpath | 54 | 7,128 | 30 | 43 | | BIG02 | Binda Street | Footpath | 295 | 81,125 | 29 | 46 | | CR006 | Denison and Brooklands Street | Shared Path | 309 | 69,525 | 28 | 47 | | CRO07 | Brooklands and Tait Street | Shared Path | 404 | 44,440 | 28 | 47 | | CROO8 | Tait Street | Recreational
Pathway | 697 | 15,6825 | 28 | 47 | | CRO09 | McDonald Street | Recreational Path | 949 | 21,3525 | 28 | 47 | | CRO10 | McDonald Street | Shared Path | 85 | 9,350 | 28 | 47 | | BIG03 | Grabine Road | Recreational Path | 500 | 137,500 | 26 | 52 | | CRO23 | Spring Street | Footpath | 35 | 4,620 | 26 | 52 | | CR027 | Clifton Park | Recreational Path | 466 | 104,850 | 26 | 52 | | BIGO4 | Mulgowrie Street | Recreational Path | 214 | 58,850 | 25 | 55 | | COLO4 | Goulburn Street | Footpath | 211 | 27,852 | 25 | 55 | | TUE01 | Bathurst Street | Shared Path | 243 | 26,730 | 25 | 55 | | TUE02 | Bell Street | Recreational Path | 213 | 23,430 | 24 | 58 | Upper Lacillan Shire Conscil ## Supporting infrastructure Table 19. Costing of supporting infrasatructure projects | Reference | Read name | Typie | Cost extimate | |-----------|-------------------------------|---------------------------------|---------------| | CRO12 | Goulburn Street | Kerb ramp | 1,700 | | CRO14 | Goulburn Street | Kerb ramp | 1,700 | | CRO15 | Goulburn Street | Kerb ramp | 1,700 | | CRO16 | Denison Street | Kerb ramp | 1,700 | | CRO17 | Roberts Street | Signage | 8,50 | | CRO18 | Brooklands Street | Signage | 8,50 | | CRO21 | SpringStreet | Signage | 8,50 | | CRO25 | Kialla Road | Kerb ramp | 1,700 | | GUN02 | Yass Street | Kerb ramp | 3,000 | | GUN07 | Warrataw and Copeland Streets | Kerb ramp | 3,000 | | GUN08 | Nelanglo Street | Kerb ramp | 3,000 | | TARO6 | Orchard Street | Disabled car park and kerb ramp | 3,000 | | TARO7 | Orchard Street | Disabled car park and kerb ramp | 3,000 | | TARO8 | Orchard Street | Disabled car park and kerb ramp | 1,700 | | TARO9 | Orchard Street | Disabled car park and kerb ramp | 1,700 | | TAR10 | Orchard Street | Kerb ramp | 3,000 | | TAR11 | Orchard Street | Disabled car park and kerb ramp | 3,000 | | CRO28 | Spring Street | Bus Shelter | 30,000 | | Total | | | \$62.900 | Peremonerass Mobilety Paralanda i file ran. # 7.0 Strategic recommendations In addition to the specific infrastructure recommendations outlined in Tables 20 and 21, a number of strategic recommendations are outlined in the Table below. Table 20. Strategic recommendations | A CONTRACTOR OF THE PARTY TH | |
--|--| | Recommendation | Details | | Conserve existing participation and | Provision of modest and realistic baseline facilities that provide the opportunity to expand and grow with community demand. | | encourage growth in participation | Focus on maintaining existing participation levels in walking and cycling through maintaining the current network, and encourage growth in participation through promotion of the existing network, development of additional routes including recreational pathways, and installation of supporting infrastructure. | | Fund the name and of the existing network | Allocate an annual program in Council's financial plan for the maintainance of the existing footpath network to assist in the upkeep of the existing network. | | Development of
supporting walk and
cycle infrastructure | Enhance the existing footpath and shared path network through the development of supporting infrastructure including: path (or roadside) lighting signage. | | increase socessibility within towns and villages | Allocate an annual access improvement program to increase pedestrian accessibility within towns and villages, including: | | | □ address the mis-alignment of kerb ramps and disabled car parking spaces □ install safe road crossing points and associated signage □ reduce the step-up from roadside to kerb in identified locations. | | Re-develop read-side drainage in Collector | Re-develop road-side drainage (i.e covered drainage channels) within Collector to allow for the development of pathways for pedestrians. | | Patto Ilhiang key
destinations | Develop a network of new paths as identified within each town and village to connect residents to key destinations. These are prioritised within Table 19. | | Deselopment of an
eccessible services
Buide | Develop an 'Accessible Services Guide' for retail and services to encourage local businesses to take steps towards enhancing their accessibility to the whole community, including wheelchairs, the elderly and the vision impaired. Guideline to include: | | | □ appropriate gradients for entry to doorway (i.e. no steps, provision of a ramp, doorway widths, self-opening doors) □ footpath signage □ internal stairs □ provision of accessible toilets. | | | Council to consider allocating a small funding program that could provide 50/50 funding up to a nominated amount (for example \$1,000). Access Committee to lobby local businesses to improve accessibility of their services. | | Activate regivenate and utilise the Upper Lichten | Re-invigotate the Access Committee including advertise for new members to represent each town within the Shire. Things to consider: | | Access Continittee | ☐ clarify the role of the committee ☐ assigning an elected member as committee chair ☐ develop terms of reference ☐ seek their input in new development applications ☐ encourage the committee to lobby local businesses ☐ identify annual priorities to work towards. | | Condition new
Sevelopments | Condition new subdivisions to provide basic footpath access in line with the PAMP and Bike Plan. | Upper Lachian Shire Courcil | Recommendation | Details | |---|--| | Council staff as leaders/
realling and cycling
ambassadors | Council employs a large number of staff from the local community and need to look internally in order to help promote walking and cycling in the Shire. This includes: staff incentives and events supporting infrastructure at Council offices and depots such as bicycle racks, showers and irons. | | School education programs and skill development | Encourage, support and partner with schools in regards to walking and cycling: walk/ride to school program in conjunction with Roads and Maritime Services education on road rules for cyclists (including a teacher in-service at the recommended learn-to-ride facility) promotion of safe routes to each school awareness to parents on the benefits of walking and cycling helmet design competition cycling skills/competency program. | | Avarences and promotion can palign | Develop and distribute promotional material to key community destinations including Council offices and Visitor Information Centres, including: mapped pedestrian and cyclists routes key destinations and sites to visit disabled access points around the towns distances of key paths and rest points, highlighting supporting facilities available Promote the brochure on Council's website and distribute to local business, accommodation and attractions. | | Encouragement of
tourism opportunities,
programmed walks and
rides, and events | Promote walking and cycling through hosting and supporting community-wide events and regular programs. Encourage tourism opportunities that link walking and cycling with local attractions, business and industry. Promote the requirement for cycling club events and racing calendars to be submitted to Council for consent, consistent with the NSW Guidelines for Bicycle Road Races 2004. | # 8.0 Implementation plan ## 8.1 Resources Resources are crucial to the successful implementation of the Plan. The following resource initiatives can assist in the successful implementation of the Plan and will provide a foundation for walking and cycling in the Upper Lachlan Shire. #### Internal Working Group The Internal Working Group is a Council group responsible for the day-to-day delivery of the PAMP and Bike Plan. The group should consist of key officers responsible for implementing the many elements of the Plan, including | П | Director | of Works | and O | perations | |---|----------|------------|-------|-----------| | _ | DICCUDI | OI TTO ING | and o | | ■ Manager of Works Assets and Risks Coordinator Director of Environment and Planning (DCP issues only) The group will ideally meet every three months to discuss and report the progress of delivery of the Plan and discuss any relevant issues or opportunities for walking and cycling. The Internal Working Group will then report to Council's Traffic Committee and subsequently Council's Operational Plan/Strategic Plan. #### Implementation funding Human resources alone will not allow the effective implementation of the PAMP and Bike Plan. Council needs to commit to the allocation of funds in its future budgets to ensure the development and maintenance of appropriate infrastructure as recommended in this Plan. Some possible funding opportunities (internal and external) are outlined on the following page, but it should be noted that they are not exhaustive and further opportunities may present themselves in the future. ## 8.2 Key partnerships A number of stakeholders are key to the successful implementation of the Plan. These include: #### Table 21. Key partnerships | Statenoider | Reistionship | | |--
---|--| | Local Government
Road Safety Program | The program is a primary avenue for delivering Council's commitment to road safety | | | Roads and Mantime
Services | Funding opportunities, partnership, advocacy and program support | | | Bioydle NSW | Funding and advocacy for cycling | | | Police Service | Promotion and regulation of road rules, reporting of crash data, education | | | Local business | Local business can promote existing pedestrian and cycle routes to locals and visitors | | | Local schools | Partner with local schools in the provision of education and awareness campaigns. Schools should be encouraging their students to walk and cycle to school and practice safe practices in regards to walking and cycling to school including the wearing of helmets and awareness of road rules | | | Cyclists, pedestrians and other path users | | | | Local media | To communicate positive messages to the community in regards to promote walking and cycling, safe cycling practices and road safety | | | The community | The general community can play a role in encouraging positive attitudes towards pedestrians and cyclists, as well as generally obeying road rules | | | Crookwell Business
Chamber | | | Upper Later Sine Council ## 8.3 Funding opportunities Funding for Council's walking and cycling initiatives can come from within Council, external funding bodies or a combination of both. Included below is a brief summary of existing and potential funding sources. #### Internal funding There may be areas within Council's exiting budget where funds can be sourced to help implement some of the actions within this Plan. Contributions or funds towards the pedestrian and bicycle network may come from projects such as: | Footpath construction | program | |-----------------------|---------| | Onen conses predome | | - ☐ Upen space programs ☐ Major local road projects ☐ Council road maintenance and - upgrade programs Section 94 and/or 94A contributions. #### State and Federal Government funding programs Funding is available for a variety of community based and cycling/safety programs/projects across a range of State and Federal Departments, including: - ☐ Transport for NSW/Roads and Maritime Services - Active Transport (Walking and Cycling) Program - Local Government Road Safety Program - NSW Bike Week event funding. - ☐ Australian Government - Regional Development Fund (RDAF) - ☐ Department of Communities Sport and Recreation - Sport and Recreation Participation Program: provides funding to not-for profit organisations and local councils for projects designed to increase regular and ongoing participation in sport, recreation or structured physical activity - □ Department of Education□ Department of Health. #### Other #### Public/private partnerships: Where there are opportunities for private investment in public infrastructure. #### Community fund raising: Where funds are raised for an identified service or project. ## 8.4 Promotion plan Promotion of walking and cycling can increase participation by raising awareness of their multiple benefits, such as a cheap and healthy alternative to car travel. Additionally, promotion activities can have a positive effect on behavioural aspects of interactions between pedestrians and cyclists and non-cyclists. Some of the key outcomes of community and stakeholder consultation included: - The need for education to improve awareness and respect between cyclists and motorists - The need for documenting and making available to the community, a guide to walking and cycling in the Shire - The need for Council to promote walking and cycling in the Shire for tourism benefits. #### Marketing Council should promote walking and cycling within the Shire through the ongoing publication of brochures/ guides that map walking and cycling routes, list key destinations and end-of-trip facilities within the Shire. Such initiatives have been successfully implemented in other locations, where maps of popular walking and cycling routes have been created linking population centres with tourist destinations. Maps provide details of tourist spots, water and food stops, lookouts, emergency spares and caution points. Walk/ride length, estimated travel time and a difficulty rating have also been assigned to each route to encourage greater awareness and information for walking and cycling.3 Council should continue to participate in and promote NSW Bike Week, through facilitating local events and workshops on topics such as bike maintenance and safe riding habits, in conjunction with local bike retailers. #### Education campaign As walking and cycling participation continues to increase, a focus on education campaigns will be needed, such as to support the growth in safe cycling and safe driving around cyclists. Knowledge and awareness of cycling among cyclists and non-cyclists is key to: - □ Elevating the status of cycling as a major transport - ☐ Encouraging safe and courteous behaviour on - shared paths Improving confidence among new cyclists - ☐ Encouraging safer driver and cyclist behaviours on The following bicycle education programs are recommended to increase the knowledge and awareness that will address the above outcomes: - Cycle skills training - Local Discovery Rides Driver awareness education. #### Cycle skills training Improving cycling skills can improve cyclist safety by boosting confidence of riders and their ability to safely ride in a range of environments. Improving the skills of new cyclists can provide the confidence needed to participate in cycling on a regular basis. The provision of regular, free cycle training is recommended. The training would benefit cyclists of a range of skill levels covering topics such as: - Road rules - Commuter cycling - Children's basic training - Adult beginner/refresher training - Basic bicycle training - Shared path etiquette and safety. #### Local Discovery Rides Bicycle NSW conducts regular discovery rides to enable local residents to discover local riding facilities and routes within their community. The rides provide a number of benefits and are valuable as: - ☐ Local bicycle leaders guide the tours resulting in great local knowledge - The rides show participants the best routes to key attractions including local shops, schools, business centres and community attractions - ☐ The rides help participants to feel safer riding in their community and encourage greater cycling participation. Local Discovery Rides will be particularly beneficial for community members who are not sure where they can cycle in the Upper Lachlan Shire. #### Driver awareness education The vulnerability of cyclists (both on and off the road) can be forgotten by drivers who benefit from the protection and comfort offered by their motor vehicle. Driver awareness of cyclists and cycling issues can be elevated though: - Council's road safety campaign - Council support of relevant campaigns such as the Amy Gillett Foundation "a metre matters" campaign - Implementation of warning and other signage as well as line marking on on-road cycling routes. How to Prepare a Bike Plan, NSW, 2010. Upperlach ar Shir Chardi | Attachment 1.: Pedestrian Access Mobility | Plan (PA | AMP) & | Bike Plan | Draft) | |---|----------|--------|-----------|--------| |---|----------|--------|-----------|--------| Item: 10.3 To be provided ## Document review A thorough literature review has been undertaken to set the scene for walking and cycling in the Upper Lachlan Shire. The review aims to assess current standards and practice for walking and cycling, the legislative framework within which they sit and new innovations for active transport. A brief summary of each relevant document is provided in the Literature Review Table below. | Table | 27 | litaratura | Review Table | | |-------|----|------------|--------------|--| | | | | | | | Ref | Dogument | Summary | |-------------|---|---| | Natio | unal context | | | N1 | Walking, Riding and
Access to Public
Transport - Supporting
Active Travel in
Australian Communities
(2013) | Proposes a hierarchy for urban roads, which prioritises pedestrians and cyclists over private vehicles. The majority of urban roads are suitable to accommodate pedestrians on footpaths and cyclists on wide bicycle lanes on road or on shared paths | | N2 | Creating Places for
People - An Urban
Design Protocol for
Australian Cities | The Urban Design Protocol is a joint development of numerous community and industry organisations, States, Territories, local governments and the Australian Government. To create a liveable place, the protocol provides the "walkable" principle, which involves "places that are enjoyable and easy to walk and bicycle around" | | КЯ | National Cycling
Strategy 2011-2016 | The National Cycling Strategy sets out a number of actions to achieve its vision of doubling cycling participation in Australia over the five years of the Strategy | | N4 | Cycling Aspects of
Austroads Guides | The Cycling Aspects of Austroads
Guides is a one-stop document, which covers all the relevant cycling design guidelines for Australian roads. The document includes design criteria for on and off-road facilities, intersections, rail crossings and end-of-trip facilities | | State | e/regional context | | | S1 | NSW Long Term
Transport Master Plan,
2012 | The NSW Long Term Transport Master Plan is an extensive transport planning document, which sets the direction for planning of all forms of transport including walking and cycling. The Plan describes a coordinated approach to transport planning in NSW, which is integrated with land use planning to develop likely attractors and activity generators | | S2 | NSW Bike Plan (2010) | The NSW Bike Plan is a visionary document that aims to make NSW "one of the world's best places to ride a bike." The Plan contains a number of actions and initiatives to support cycling in NSW | | S3 | Cycling Safety Action
Plan 2014-2016 | The Cycling Safety Action Plan acknowledges that safety is a major barrier to cycling in NSW. It attempts to address this issue by developing a number of actions to improve cycling safety through improved infrastructure, improved use o safety equipment, safe and compliant behaviours and safer bicycles | | S4 | Planning Guidelines
for Walking and Cycling
(2004) | The Guidelines were developed in 2004 to assist land-use planners and other professionals to incorporate walking and cycling into their relevant planning processes. Of particular relevance to the Upper Lachlan Shire PAMP and Bike Plan are the suggested bicycle parking provision rates for different land-use types These could be included in Council's DCP to encourage cycling | | \$ 5 | Transport for NSW
Disability Action Plan
2012-2017 | The Disability Action Plan highlights the importance of a well designed pedestrian environment, which offers safe and comfortable travel for people with limited mobility or other disability. There is a heavy focus on providing good access to public transport as part of the disability action plan | | S6 | Development & Active
Living - Designing
Projects for Active Living
(2010) | The Development and Active Living document is targeted at Strategic Planners preparing Development Control Plans (DCPs), land use and transport strategies and other policy documents. The guide contains a number of considerations to be included in the Development Application (DA) process to address five principles o active living. This resource is a valuable asset, which should be considered for us by the Upper Lachlan Shire Council to integrate into the DCP | | Ref | Document | Summary | |------------|---|---| | S 7 | NSW Guidelines for
Bicycle Road Races
2004 | The guidelines outline the process for obtaining approval to conduct bicycle racing on roads and highways within New South Wales. These guidelines address bicycle racing and the bicycle component of multi sport races only, and do not address non-competitive bicycle rides such as charity and promotional rides. | | Local | context | | | L1 | Upper Lachlan Shire
Local Environmental
Plan 2010 | Council's Local Environmental Plan outlines the essential services required to be provided within a development. The provision of footpaths and associated infrastructure will be considered in future LEP reviews. | | L2 | Section 94A Development Contributions Plan | Council's scope of service delivery includes roads and public works, planning, building control and preservation, parks and environmental conservation, community services, recreation and culture, and employment access. | | | 2012
Upper Lachlan
Development | Council's future capital works program for delivery of facilities and services, and the administration of development contributions, is in accordance with Council's statement of intent. | | | Contributions Plan
2007, 2010 | The Plan is largely silent on the provision of pedestrian and cycling network infrastructure within the road and public works network. | | L3 | Upper Lachlan Strategy
Vision 2020, 2009 | The Upper Lachlan Shire Strategy Vision 2020 was developed to guide the ongoing sustainable management of land decisions to 2020. The Strategy identifies the previous PAMP and Bike Plan and highlights the need to integrate cyclist and pedestrian linkages and facilities into future road network plans. | | L4 | Social and Community
Plan 2013-2018 | The Social and Community Plan is based on the guiding principles of social justice and sustainability, with the community heavily involved in its development. The Plan identifies the interests of a number of target groups. Public transport is raised for a number of target groups, however is largely silent on active transport such as walking and cycling | | L5 | Upper Lachlan Shire
Council Pedestrian
Access Mobility Plan
(PAMP) and Bike Plan
2005 | The Plan focuses on pedestrian and cycling infrastructure by providing guidelines for design and recommends a number of improvements to the existing network. The current Plan will build upon the strategies and recommendations made in the previous PAMP and Bike Plan | | L6 | Upper Lachlan Ageing
Strategy 2013 | Relevant to the PAMP and Bike Plan, the strategy identifies outdoor spaces, buildings and infrastructure as a priority area; with well maintained pavements, free of obstructions and reserved for pedestrians; non-slip pavements, that are wide enough for wheelchairs and provide dropped curbs to road level; pedestrian crossings are sufficient in number and safe for people with different levels and types of disability; cycle paths are seperate from pavements and other pedestrian walkways; buildings are well-signed outside and inside, with sufficient seating and toilets, accessible elevators, ramps, railings and stairs, and non-slip floors. | | L7 | Footpath Usage Policy
2007 | The Policy stipulates Council's requirements for the use of footpaths for outdoor dining, commercial and other activities by businesses and organisations. Relevant objectives of the Policy to the PAMP and Bike Plan are: To allow pedestrians ease of access along footpaths; To provide for the safe movement of pedestrians; and To facilitate businesses to improve disabled access. | ## Path classification and design standards This section addresses the classification of different cycling path types and the design standards required for each path type. In the event of any inconsistencies between the standards identified in this document and Council's engineering guidelines, the standards identified in Council's engineering guidelines prevail. ## Type of bicycle facility required The type of bicycle facility required will depend on a number of factors, including the hierarchy of the route and the type of cyclist likely to use such a route. However, the most important factor to consider for urban cycling routes is the characteristics of adjacent motor vehicle traffic. Austroads and RMS suggest that guidelines for deciding on the type of facility required should be based on the speed of traffic and the number of vehicles present on adjacent roads. The guide is shown visually below and is based on best-practice studies from the Netherlands and other sources. The guide suggests that generally 40km/hr streets will be suitable for mixed traffic (except where there is a very high amount of traffic). 50-60km/hr streets are often suitable for bicycle lanes/shoulders (depending on the traffic level). Streets that are 80km/hr or higher will usually require separated paths¹. These principles are intended as a guide only and it may not be possible to include the recommended facility in every situation. Figure 14. Type of bicyde facility required Austroads. (2014). Cycling Aspects of Austroads Guides; Roads and Maritime Services. (2005). NSW Bicycle Guidelines. ## On-road facilities #### Bicycle lane (exclusive bicycle lane or bicycle shoulder lane) On-road facilities provide visually separated operating space for the use of cyclists on roads. They are used to define bicycle routes where the prevailing road speed and traffic volume requires a degree of separation. Both exclusive bicycle lanes and bicycle shoulder lanes share the same recommended path widths and these are provided in the table below. Bicycle lanes should be provided on both sides of the road where possible. Exclusive bicycle lanes are generally preferred to shoulder lanes in urban areas, with a higher volume of traffic, while shoulder lanes are preferred in rural areas where there are lower volumes of traffic. Aside from the speed of motor traffic, designers should also consider the number of cyclists, the volume of large vehicles, the ability to make space available and physical and budgetary constraints when deciding an appropriate lane width. Table 23. Recommended bicycle lane dimensions' | Fload posted speed limit | 1 L | Lane width (m) | | | |--------------------------|---------|----------------|---------|--| | (km/hr) | 60 | 23 | 300 | | | Desirable | 1.5 | 2.0 | 2.5 | | | Acceptable range | 1.2-2.5 | 1.8-2.7 | 2.0-3.0 | | ¹ Austroads. (2014). Cycling Aspects of Austroads Guides. ## Mixed traffic street (wide kerbside lanes or
tight profile) Mixed traffic streets are often common in urban areas with low traffic speeds and volumes. Mixed traffic streets can be wide kerbside lanes which provide room for motorists to safely pass cyclists. It is preferable to only include wide kerbside lanes in traffic speeds of up to 60km/hr. Roads, which contain higher traffic speeds should generally include bicycle lanes for on-road cycling. Where this is not possible, roads up to 80km/hr may be used for wide kerbside lanes, with a preferred lane width of 4.5m.¹ Mixed traffic streets can also be provided in a narrow cross section road (tight profile). These are generally provided for in low speed, low traffic environments. In the narrow cross section roads the speed limit should be 50km/h or less with no room for motorists to overtake cyclists. Lanes with a critical width of 3.3 - 3.7m should not be used in mixed traffic situations as they encourage dangerous overtaking by motorists. RMS recommends PS-2 pavement symbols for mixed traffic streets to be placed every 50m-75m and before and after intersections.² Table 24. Recommended mixed traffic street dimensions3 | Profile and road posted | Lane reidth (m) | | | |-------------------------|--------------------|-----------------|--| | speed kmit (km/hr) | Names
Edwar, he | Vide
SOLEVIE | | | Desirable | 2.7 | 4.2 | | | Acceptable range | 2.5 - 3.3 | 37-4.5 | | Figure 16. Wide kerbside ione (City of Newcastle) Figure 17. Mixed traffic - tight profile (RMS - NSW bicycle guidelines) Austroads. (2014). Cycling Aspects of Austroads Guides. ² Roads and Maritime Services. (2005). NSW Bicycle Guidelines ³ Austroads. (2014). Cycling Aspects of Austroads Guides; Roads and Maritime Services. (2005). NSW Bicycle Guidelines ## Off-road facilities Off-road cycling facilities provide routes that are separated from motor vehicle traffic. These can take the form of: - Exclusive bicycle paths - 3 Shared paths - Separated paths. The diagram below from Austroads suggests where off-road cycling facilities are appropriate and delivers a method for selecting the appropriate path type. The majority of routes in Upper Lachlan are expected to be suitable for shared path use. The level of demand for each route should be assessed separately. However, generally speaking the demand for each path from pedestrians and cyclists is expected to be moderate enough to allow shared path implementation with minimal conflict between users. - 1 The level of demand can be assessed generally on the basis of the peak periods of a typical day as follows: - a. Low demand: Infrequent use of path (say less than 10 users per hour) - b. High demand: Regular use in both directions of travel (say more than 50 users per hour). - 2 These path volumes are suggested in order to limit the incidence of conflict between users, and are significantly lower than the capacity of the principal path types. Source: Austroads (2009f) Figure 2.1. Rigure 18. Selection guide for off road bicycle route types (Austroads - Cycling Aspects of Austroads Guides) #### Shared path A path designed for many users including cyclists, people with prams and wheelchairs as well as pedestrians. The term shared path is used to describe a path that allows both cyclists and pedestrians. Austroads suggests that shared paths are appropriate where: - Demand exists for both a pedestrian path and a bicycle path but where the intensity of use is not expected to be sufficiently great to provide separate facilities - An existing low-use path can be satisfactorily modified (e.g. by appropriate width and signage) to provide for cyclists.¹ Shared paths can be provided for in a road reserve with physical separation from motor vehicle traffic by a median strip, verge or kerb. They can also be provided outside the road reserve in locations such as parks, drainage easements or reserves. Where the shared path is on a regional route, consideration should be given to prioritising the route over low volume side streets. The recommended shared path dimensions are provided in the table below. Although the minimum recommended width is 2.5m it is noted that a lesser width (2.0m - 2.5m) may be adopted in certain circumstances, where volumes and speeds remain low. Table 25. Recommended shared path dimensions3 | Path type | Path variable (m) | | | | |------------------|-------------------|---------------|-------------------|--| | | Local access path | Commuter path | Recreationel patt | | | Desirable | 25 | 3.0 | 3.5 | | | Acceptable range | 2.5* - 3.0 | 2.5* - 4.0 | 3.0* - 4.0 | | * A lesser width should only be adopted where cyclist volumes and operational speeds will remain low. d path (pedestrians + cyclests) Footpath Figure 19. Shared path in a road reserve (RMS - NSW bicycle guidelines) Figure 20. Shared path in a non-road reserve (RMS - NSW bicycle guidelines) - Austroads. (2014). Cycling Aspects of Austroads Guides. - 2 Roads and Maritime Services. (2005). NSW Bicycle Guidelines. - 3 Austroads. (2014). Cycling Aspects of Austroads Guides. Lighting Lighting should be provided on paths where there are large number of users in periods of darkness. The type of lighting used will depend on a number of factors including the number of users expected on the path, the proximity of residential or other sensitive uses and the presence of wildlife nearby. For all new lighting installations in the Upper Lachlan Shire, reference should be made to AS 1158.3.1-2005 for design standards¹. Glow in the dark paths A new technology is allowing the provision of glow in the dark paths as an alternative to street lights. These paths negate the need for electricity, and are thought to reduce the impact on native fauna. The footpath contains minerals which absorb ultraviolet light during the day so a soft glow is emitted at night. The paths have recently been developed in Gosford and Canberra. ASINZS 1158.3.1:2005 Lighting for Roads and Public Spaces - Pedestrian Area (Category P) lighting - Performance and Design Requirements ## End-of-trip facilities Bicycle parking should be provided for cyclists in key destinations. Approximately 25% of respondents to the community survey cited that a lack of end-of-trip facilities discouraged them from cycling. Bicycle parking facilities should be provided within 100m of common commuting or recreational destinations. These include schools, shopping centres, parks and work places. The exact location of parking facilities at each destination is vital and convenience is the most important factor to consider when choosing a location. The classification of bicycle parking facilities is provided below along with examples of best practice. Table 19. Classification of bloyde parking facilities! | Security | Description | Safety features | Typical applications | Best practice example | |----------|---|--|---|-----------------------| | A | Individual locker
with a high security
locking mechanism | Highly visible, publicly
accessible, well lit and
close to the modal
change point | Busy transport hubs | | | B | A secure room or structure, protected from the weather, containing bicycle parking devices that allow users to lock the bicycle frame and both wheels | Direct surveillance
may be necessary to
reduce the level of
theft among users
(e.g. CCTV). Should
be located as close to
the entrance/exit as
possible and in well lit
areas where passive
surveillance is likely | Destination parking
(nearby to where a
cyclist works, lives
or studies), all day
parking (workplace,
school, university),
transport hubs,
multi-dwelling
developments | | | C | Bicycle rails or
racks to which both
the bicycle frame
and wheels can be
locked | Located in well lit
areas where passive
surveillance is likely
Facilities should be
located as close as
practicable to the
user's destination | Short term parking
only e.g. retail,
libraries, gyms,
parks | | It is expected that security level C will be the most commonly required bicycle parking facility in the Upper Lachlan Shire. The design of this type of facility typically matches that seen in the best practice example above. However, artistic designs are encouraged and involving the community in these designs is also beneficial as a great way to encourage community involvement in creating a sense of place in the Shire. This practice of community design of bicycle parking has been successfully implemented in other towns and could also be successful in the Upper Lachlan Shire, where more bicycle parking is required. AS 2890.3:2015 Parking facilities - Bicycle parking ## Cycling and shared path crossings All of the existing cycling/shared path crossings in the Upper Lachlan Shire are unsignalised crossings. Unsignalised crossings on low volume streets (less than 3000 vpd) requires no refuge and a straight crossing of the road using kerb ramps and a suitable terminal treatment is sufficient. In some cases it may be suitable to provide cyclist (and pedestrian in the case of shared paths) priority. Where a significant path that has an important network role crosses low-volume local streets, vehicle priority can provide an inferior riding experience. In this case an opportunity exists to provide cyclist/pedestrian priority, while simultaneously providing a traffic control device. An example of the preferred treatment can
be seen below and involves a raised path crossing in conjunction with give way sign controls to regulate road traffic. Figure 21. Cycling and shared path crossings ## Pedestrian crossings Part 4 of the Austroads Guide to Road Design provides guidance on the design of intersections and crossings. The type of crossing used depends on the specific conditions present within a street. There are no signalised crossing options in the Upper Lachlan Shire, therefore the best practice research here focuses on non-signalised crossing options. The Austroads guidelines state that pedestrian zebra crossings are usually only suitable in low-speed environments (less than or equal to 50km/hr) on local residential streets, collector roads where speeds are constrained, in shopping centre car parks and multi-level car parks. The zebra type crossing should also be considered at arterial road roundabouts with high pedestrian usage. Safety issues with pedestrian zebra crossings can arise as pedestrians assume right of way on the crossing and take less caution than at other crossing points. However, it is clear that pedestrian zebra crossings still provide an important role, particularly for less mobile pedestrians who take longer to cross the road. Another important consideration for pedestrian crossings is visibility. Sight distance can be improved through footpath extensions and lighting for night time. Where visibility is poor, consideration should be given to providing flashing yellow lights at a zebra crossing. Alternatives to pedestrian zebra crossings include traffic islands and pedestrian refuges. There are a range of designs of these types of crossings. ## Signage On-road signs The following tables identify the signage types to be utilised within the bicycle network and provides a hierarchy of on-road signs based on the application within the network. | Sign name | Sign number | Sign | Application | |-----------------------|-------------|--|--| | Regulatory signs | | | | | Bicycle Lane | R7-1-4 | LANE | To be used at the beginning of an exclusive bicycle lane and at extra locations with spacing of the signs not more than 500m. | | AHEAD | R7-2 | AHEAD | Optional advance notice of a bicycle lane to be used where required. | | END | R7-4 | END | To be used at the end of a bicycle lane. | | BICYCLES
EXCEPTED | R9-3 | BICYCLES
EXCEPTED | To be used in conjunction with other regulatory signs where the use of bicycles is permitted contrary to the regulatory requirement, e.g. NO ENTRY, No Right (or Left) Turn. | | Warning/guidance | esigns | | | | Bicycle Warning | W6-7 | A STONE OF THE PROPERTY | Used to warn motorists of the presence of bicycles on the road where cyclists may be at risk. These can also be supplemented with NEXT x km (W8-17-1) plates or NEXT x m (W8-17-2) plates. | | WATCH FOR
Bicycles | G9-57 | WATCH FOR | To be used at road narrowings or other squeeze points where bicycles may potentially come into conflict with motor traffic. | | ALL BICYCLES | G9-60 | ALL
BICYCLES | To be used at any point where it is required to direct cyclists from the road to a particular route or path. | ## Off-road signs Table 21. Off-road signs | Sign name | Sign number | Sign | Application | |-------------------------------|-------------|-----------|--| | Regulatory signs | | | | | GIVE WAY | R1-2 | GIVE | To be used on a bicycle path or shared path where they meet a road crossing. A give-way line may also be used to reinforce the need to give way to road traffic. A smaller sign is used on paths than those used on roads (see AS1742.9-2000). | | Bicycle path ONLY | R8-1 | ONLY | Used on a path designated to cyclists only. | | Shared path | R8-2 | * did | To be used to designate a path for pedestrians and cyclists. | | Separated path | R8-3 | ONLY ONLY | To be used to designate a route where cyclists and pedestrians travel on separate paths. | | Warning/guidance s | igns | | | | Pedestrian warning | W6-1 | A A | To be used where any path is about | | Bicycle warning | W6-7 | A CATA | to cross a path used by the relevant user group, e.g. a pedestrian warning | | Bicycle/pedestrian
warning | W6-9 | MA CO | sign would be used on a shared path where it is about to cross a pedestrian footpath. | | ROAD AHEAD | W6-8 | ROAD | Used to inform cyclists travelling along an off-road path that the path is about to cross or end at a road and the presence of the road is not obvious. | Shared bath behavioural signage Shared paths carry the benefits of being able to serve two user groups: pedestrians and cyclists. However, conflicts between these two groups can occur, particularly on high use paths. Behavioural signage is an effective way of managing these conflicts and educating users of paths to be aware of other users. The Department of Transport and Main Roads in Queensland has developed a suggested hierarchy for the implementation of signage on shared paths, which is provided below. Table 22. Shared bath behavioural signage hierarchy | Level | Level of usage | Recommended installation | |---------|---|--| | Level 1 | Basic requirement of all shared paths. Low use and few reported conflicts | Path centre line and pavement symbols. See MUTCD* Part 9 for path line marking recommendations | | Level 2 | Moderate path use and number of reported conflicts | As for Level 1 plus group
signs (Figure (e) or (g),
right) at key locations
and sign columns
(Figure (f), right) at min
500m spacings | | Level 3 | High path use
and number of
reported conflicts | As for Level 2 plus additional single or grouped behavioural signs according to the type and level of reported and observed conflicts | ^{*}Manual of Uniform Traffic Control Devices It is intended that this hierarchy be implemented from the bottom-up. That is, Level 1 signage should be adopted on the shared path to begin with. Some time after these have been implemented, observations or feedback from users should be sought to ascertain the number of conflicts present. If necessary, Level 2 signage should then be used and Level 3 measures if required thereafter. (a) Keep Left sign (G9-259-1) (b) Warn When Approaching sign (G9-259-2) (c) Move Off Path When Stopped sign (G9-259-3) (d) Control Your Dog sign (G9-259-4) (e) Preferred group sign for path entry or major path access points. Figure 21. Shared path behavioural signage Department of Transport and Main Roads (QLD). A guide to signing cycle networks, 2009. ## Directional signage Pedestrian and bicycle network signage is an important function that improves connectivity and coherence for walkers and cyclists. Directional signage for walking and cycling should be totally separate from the road system signage to avoid conflict or confusion. Australian Standard AS1742.9 Manual of Uniform Traffic Control Devices should be used for guidance on directional signage. The Standards provide requirements and recommendations on the colour and reflectorization of signs, legend size, directional indication, layout design and the location of signs. The NSW Bicycle Guidelines (RMS 2005) also set out desired directional signage for cycling. The system for directional signage should be closed, meaning if a location is displayed on a sign it should be displayed on every sign thereafter until the
destination has been reached. Destinations to include on directional signage include: | sign therearter untui the destination has been reached. Destinations to include on directional signage inc | ilude: | |--|---------| | ☐ Cities | | | □ Towns | | | ☐ Regional centres | | | ☐ Identifiable precincts | | | ☐ important recreational destinations (e.g. major parks, waterways). | | | Reference should be made to the NSW Bicycle Guidelines for more detailed information on the implementation | ntation | | of directional signage. This information includes an appropriate measuring system, the selection of appr | opriate | | destinations and visibility of signage. | | | | | An extract of the RMS guidelines is provided on the following page displaying recommended examples of signs to be used. One important tool that is not displayed in these examples is the use of a brown coloured sign for directions to tourist facilities or points of tourist interest (a recommendation of the Australian Standard AS1742.9 Manual of Uniform Traffic Control Devices). ## Alternate signage In addition to a network of uniform directional signage, opportunity exists for the installation of localised signage showcasing local artworks and creative forms. The use of alternate signage can enhance the formal signage network through way-finding and providing an interesting visual place marker, useful for both locals and visitors to an area. Figure 22. Bicycle network route directional signage (RMS. NSW Bicycle Guidelines, 2005) recreation open space and sport specialists # ROSS Planning Pty Ltd ABN 32 508 029 959 Upper floor, 63 Bay Terrace Wynnum QLD 4178 PO Box 5660 Manly QLD 4179 Telephone: (07) 3901 0730 Fax: (07) 3893 0593